The accumulation of plastic debris that concentrates hydrophobic compounds and microbial communities creates the potential for altered aquatic biogeochemical cycles. This study investigated the role of plastic debris in the biogeochemical cycling of mercury in surface waters of the San Francisco Bay, Sacramento River, Lake Erie, and in coastal seawater. Total mercury and monomethylmercury were measured on plastic debris from all study sites. Plastic-bound microbial communities from Lake Erie and San Francisco Bay contained several lineages of known mercury methylating microbes, however the hgcAB gene cluster was not detected using polymerase chain reaction. These plastic-bound microbial communities also contained species that possess the mer operon, and merA genes were detected using polymerase chain reaction. In coastal seawater incubations, rapid mercury methylation percentages were greater in the presence of microplastics and demethylation percentages decreased as monomethylmercury additions adsorbed to microplastics. These findings suggest that plastic pollution has the potential to alter the biogeochemical cycling of mercury in aquatic ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2021.112768 | DOI Listing |
Sci Rep
January 2025
Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.
With the global population surpassing 8 billion, waste production has skyrocketed, leading to increased pollution that adversely affects both terrestrial and marine ecosystems. Public littering, a significant contributor to this pollution, poses severe threats to marine life due to plastic debris, which can inflict substantial ecological harm. Additionally, this pollution jeopardizes human health through contaminated food and water sources.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Wastewater treatment plants (WWTPs) are significant sources of microplastic (MP) emissions. In order to quantify the potential MP emission from WWTPs, a database of more than 10,000 WWTPs in China with an estimated MP emission rate was built. The MP riverine retention after emission was also estimated based on Stokes' law for both fragments and fibers.
View Article and Find Full Text PDFEnviron Res
January 2025
Hydrology and Environmental Hydraulics Group, Wageningen University, Wageningen, Netherlands.
Concentrations of microplastics are both temporally and spatially variable in streamflow. Yet, an overwhelming number of published field studies do not target a range of flow conditions and fail to adequately capture particle transport within the full flow field. Since microplastic flux models rely on the representativeness of available data, current predictions of riverine exports contain substantial error.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
The plastisphere, defined as the ecological niche for microbial colonization of plastic debris, has been recognized as a hotspot of pathogenic and antibiotic-resistant bacteria. However, the interactions between bacteria and phages facilitated by the plastisphere, as well as their impact on microbial risks to public health, remain unclear. Here, we analyzed public metagenomic data from 180 plastisphere and environmental samples, stemming from four different habitats and two plastic types (biodegradable and nonbiodegradable plastics) and obtained 611 nonredundant metagenome-assembled genomes (MAGs) and 4061 nonredundant phage contigs.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
Since the widespread usage of plastic materials and inadequate handling of plastic debris, nanoplastics (NPs) and microplastics (MPs) have become global hazards. Recent studies prove that NPs/MPs can induce various toxicities in organisms, with these adverse effects closely related to gut microbiota changes. This review thoroughly summarized the interactions between NPs/MPs and gut microbiota in various hosts, speculated on the potential factors affecting these interactions, and outlined the impacts on hosts' health caused by NPs/MPs exposure and gut microbiota dysbiosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!