Age-dependent mechanical and microstructural properties of the rabbit soleus muscle.

Acta Biomater

Institute of Mechanics and Adaptronics, Technische Universität Braunschweig, Braunschweig D-38106, Germany. Electronic address:

Published: October 2021

During growth there are serious changes in the skeletal muscles to compensate for the changed requirements in terms of body weight and size. In this study, the age-dependent (between 21 and 100 days) mechanical and microstructural properties of rabbit soleus muscle tissue were investigated. For this purpose, morphological properties (animal mass, soleus muscle mass, tibial length) were measured at 5 different times during aging. On the other hand, fibre orientation-dependent axial and semi-confined compression experiments were realised. In addition, the essential components (muscle fibres, extracellular matrix, remaining components), dominating the microstructure of muscle tissue, were analysed. While the mechanical results show hardly any age-dependent differences, the morphological and microstructural results show clear age-dependent differences. All morphological parameters increase significantly (animal mass by 839.2%, muscle mass 1050.6%, tibial length 233.6%). In contrast, microstructural parameters change differently. The percentage of fibres (divided into slow-twitch (ST) and fast-twitch (FT) fibres) increases significantly (137.6%), while the proportions of the extracellular matrix and the remaining components (48.2% and 46.1%) decrease. At the same time, the cross-sectional area of the fibres increases significantly (697.9%). The totality of this age-dependent information provides a deeper understanding of age-related changes in muscle structure and function and may contribute to successful development and validation of growth models in the future. STATEMENT OF SIGNIFICANCE: This article reports the first comprehensive data set on age-dependent morphological (animal mass, soleus muscle mass, tibial length), mechanical (axial and semi-confined compression), and microstructural (muscle fibres, extracellular matrix, remaining components) properties of the rabbit soleus muscle. On the one hand, the results of this study contribute to the understanding of muscle mechanics and thus to understanding of load transfer mechanisms inside the muscle tissue during growth. On the other hand, these results are relevant to the fields of constitutive formulation of age-dependent muscle tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2021.07.066DOI Listing

Publication Analysis

Top Keywords

soleus muscle
20
muscle tissue
16
muscle
13
properties rabbit
12
rabbit soleus
12
animal mass
12
muscle mass
12
tibial length
12
extracellular matrix
12
matrix remaining
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!