Human T-cell leukemia virus type 1 (HTLV-1) infection of host cells is mainly mediated by interactions with the viral envelope glycoprotein surface unit (SU) and three host receptors: heparan sulfate proteoglycan, neuropilin-1 (Nrp1), and glucose transporter type 1. Residues 90-94 of SU are considered as a Nrp1 binding site, and our previous results show that an SU peptide consisting of residues 85-94 can bind directly to the Nrp1 b1 domain with a binding affinity of 7.4 μM. Therefore, the SU peptide is expected to be a good model to investigate the SU-Nrp1 interaction. Recently, the N93D mutation in the Nrp1 b1 binding region of the SU was identified in symptomatic patients with HTLV-1 infections in the Brazilian Amazon. However, it remains unclear how the SU-N93D mutation affects Nrp1 b1 binding. To elucidate the impact of the substituted Asp93 of SU on Nrp1 b1 binding, we analyzed the interaction between the SU-N93D peptide and Nrp1 b1 using isothermal titration calorimetry and nuclear magnetic resonance. The SU-N93D peptide binds directly to Nrp1 b1 with a binding affinity of 3.5 μM, which is approximately two-fold stronger than wild-type. This stronger binding is likely a result of the interaction between the substituted residue Asp93 of the N93D peptide and the four residues Trp301, Lys347, Glu348, and Thr349 of Nrp1 b1. Our results suggest that the interaction of SU Asp93 with the four residues of Nrp1 b1 renders the high affinity of the N93D mutant for Nrp1 b1 binding during HTLV-1 entry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2021.140708 | DOI Listing |
Elife
January 2025
Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.
The establishment and growth of the arterial endothelium requires the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (/, , and .
View Article and Find Full Text PDFObesity is a global health crisis, with its prevalence particularly severe in the United States, where over 42% of adults are classified as obese. Obesity is driven by complex molecular and tissue-level mechanisms that remain poorly understood. Among these, angiogenesis-primarily mediated by vascular endothelial growth factor (VEGF-A)-is critical for adipose tissue expansion but presents unique challenges for therapeutic targeting due to its intricate regulation.
View Article and Find Full Text PDFBiochem Genet
December 2024
Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, No. 21 Jiefang Rd, Xi'an, 710004, Shaanxi, China.
Retinoblastoma (RB) is an aggressive form of eye cancer. β-Asarone is a bioactive component isolated from the medicinal plant Acorus tatarinowii Schott and has anticancer effects on various human cancers. However, reports regarding the role of β-Asarone in RB remain limited.
View Article and Find Full Text PDFSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus that caused the Coronavirus Disease 2019 (COVID-19) pandemic, has a spike glycoprotein that is involved in recognizing and fusing to host cell receptors, such as angiotensin-converting enzyme 2 (ACE2), neuropilin-1 (NRP1), and AXL tyrosine-protein kinase. Since the major spike protein receptor is ACE2, an enzyme that regulates angiotensin II (1-8), this study tested the hypothesis that angiotensin II (1-8) influences the binding of the spike protein to its receptors. While angiotensin II (1-8) did not influence spike-ACE2 binding, we found that it significantly enhances spike-AXL binding.
View Article and Find Full Text PDFFront Pharmacol
November 2024
Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
Given that overexpression of Poly (ADP-ribose) polymerase-1 (PARP1) and Neuropilin-1 (NRP1) is implicated in the pathogenesis of human breast cancer, the design of dual PARP1/NRP1 inhibitors has wide therapeutic prospect. However, there have been no reports of such inhibitors so far. Herein, we discovered novel small molecule inhibitors that simultaneously target PARP1 and NRP1 using structure-based virtual screening for the treatment of breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!