Objective: Stroke is a major cause of death and disability in the United States. Current acute stroke therapy consists of clot-dissolving drugs, catheter-based interventions and physical rehabilitation. To date, there are no therapies that directly enhance neuronal survival after a stroke. Previous work from our lab demonstrated that Interleukin-15 (IL-15) peptide could rescue cardiomyocytes subjected to hypoxia. We sought to extend these findings to cortical neurons since IL-15 has been implicated to have an important role in neuronal homeostasis.

Methods: We have evaluated the effect of IL-15 peptide on primary cortical neurons derived from embryonic rats in vitro under conditions of anoxia and glucose deprivation, and in vivo following middle cerebral artery occlusion.

Results: IL-15 administration rescued neuronal cells subjected to anoxia coupled with glucose deprivation (AGD), as well as with reoxygenation. A hallmark of stroke is the ischemic microenvironment and associated oxidative stress, which results in DNA damage and ER stress, both of which contribute to neuronal cell damage and death. The expression of anoxia, ER stress, and DNA damage factors/markers was evaluated via western blot and correlated with the cellular survival effects of IL-15 in vitro. In addition, IL-15 effect of alleviating ER stress and increasing cell survival was also observed in vivo.

Interpretation: Our data indicate, for the first time, that administration of the pleiotropic factor IL-15 reduces neuronal cell death during AGD, which correlates with modulation of multiple cellular stress pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2021.103658DOI Listing

Publication Analysis

Top Keywords

cortical neurons
12
il-15 peptide
8
glucose deprivation
8
stress dna
8
dna damage
8
neuronal cell
8
il-15
7
neuronal
5
stress
5
interleukin-15 modulates
4

Similar Publications

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Investigating the physiological mechanisms in the motor cortex during rehabilitation exercises is crucial for assessing stroke patients' progress. This study developed a single-channel Jansen neural mass model to explore the relationship between model parameters and motor cortex mechanisms. Firstly, EEG signals were recorded from 11 healthy participants under 20%, 40%, and 60% maximum voluntary contraction, and alpha rhythm power spectral density characteristics were extracted using the Welch power spectrum method.

View Article and Find Full Text PDF

: We assessed the influence of long-term injection of magnoflorine (MAG) on memory acquisition in mice for the first time. : This isoquinoline alkaloid that belongs to the aporphines was isolated from the roots of by centrifugal partition chromatography (CPC) using a biphasic solvent system composed of chloroform: methanol: water in the ratio 4:3:3 (//) with 20 mM of hydrochloric acid and triethylamine, within 64 min. : Our results indicated that long-term injection of MAG 20 mg/kg dose improve the long-term memory acquisition in mice that were evaluated in the passive avoidance (PA) test with no toxicity records.

View Article and Find Full Text PDF

Chronic stress exposure has been widely recognized as a significant contributor to numerous central nervous system (CNS) disorders, leading to debilitating behavioral changes such as anxiety, depression, and cognitive impairments. The prolonged activation of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress disrupts the neuroendocrine balance and has detrimental effects on neuronal function and survival. () Gaertn.

View Article and Find Full Text PDF

Cocaine-Induced Microglial Impairment and Its Rehabilitation by PLX-PAD Cell Therapy.

Int J Mol Sci

December 2024

Neuropharmacology Laboratory, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.

Chronic cocaine use triggers inflammatory and oxidative processes in the central nervous system, resulting in impaired microglia. Mesenchymal stem cells, known for their immunomodulatory properties, have shown promise in reducing inflammation and enhancing neuronal survival. The study employed the cocaine self-administration model, focusing on ionized calcium-binding adaptor protein 1 (Iba-1) and cell morphology as markers for microglial impairment and PLX-PAD cells as a treatment for attenuating cocaine craving.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!