Autonomous swimmers have been intensively studied in recent years due to their numerous potential applications in many areas ranging from biomedicine to environmental remediation. Their motion is based either on different self-propulsion mechanisms or on the use of various external stimuli. Herein, the synergy between the ion flux around self-electrophoretic Mg/Pt Janus swimmers and an external magnetic field is proposed as an efficient alternative mechanism to power swimmers on the basis of the resulting Lorentz force. A strong magnetohydrodynamic effect is observed due to the orthogonal combination of magnetic field and spontaneous ionic currents, leading to an increase of the swimmer speed by up to 2 orders of magnitude. Furthermore, the trajectory of the self-propelled swimmers can be controlled by the orientation of the magnetic field, due to the presence of an additional torque force caused by a horizontal cation flux along the swimmer edges, resulting in predictable clockwise or anticlockwise motion. In addition, this effect is independent of the swimmer size, since a similar type of rotational motion is observed for macro- and microscale objects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.1c05589DOI Listing

Publication Analysis

Top Keywords

magnetic field
12
janus swimmers
8
swimmers
5
lorentz force-driven
4
force-driven autonomous
4
autonomous janus
4
swimmers autonomous
4
autonomous swimmers
4
swimmers intensively
4
intensively studied
4

Similar Publications

Overactive bladder (OAB) is a prevalent chronic condition affecting approximately 12% of adults, with incidence increasing with age. While pharmacological and behavioural therapies are standard treatments, their efficacy is often limited by side effects and poor adherence. This study aimed to compare the therapeutic effects of precision magnetic stimulation guided by motor-evoked potential with general magnetic therapy in patients with OAB.

View Article and Find Full Text PDF

The Brain's Aging Resting State Functional Connectivity.

J Integr Neurosci

January 2025

Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

Resting state networks (RSNs) of the brain are characterized as correlated spontaneous time-varying fluctuations in the absence of goal-directed tasks. These networks can be local or large-scale spanning the brain. The study of the spatiotemporal properties of such networks has helped understand the brain's fundamental functional organization under healthy and diseased states.

View Article and Find Full Text PDF

Block copolymer (BCP) microparticles, which exhibit rapid change of morphology and physicochemical property in response to external stimuli, represent a promising avenue for the development of programmable smart materials. Among the methods available for generating BCP microparticles with adjustable morphologies, the confined assembly of BCPs within emulsions has emerged as a particularly facile and versatile approach. This review provides a comprehensive overview of the role of responsive surfactants in modulating interfacial interactions at the oil-water interface, which facilitates controlled BCP microparticle morphology.

View Article and Find Full Text PDF

Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method.

View Article and Find Full Text PDF

Research on RTD Fluxgate Induction Signal Denoising Method Based on Particle Swarm Optimization Wavelet Neural Network.

Sensors (Basel)

January 2025

College of Computer Science and Technology, Beihua University, No. 3999 East Binjiang Road, Jilin 132013, China.

Aeromagnetic surveying technology detects minute variations in Earth's magnetic field and is essential for geological studies, environmental monitoring, and resource exploration. Compared to conventional methods, residence time difference (RTD) fluxgate sensors deployed on unmanned aerial vehicles (UAVs) offer increased flexibility in complex terrains. However, measurement accuracy and reliability are adversely affected by environmental and sensor noise, including Barkhausen noise.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!