Telmisartan ameliorates cardiac fibrosis and diastolic function in cardiorenal heart failure with preserved ejection fraction.

Exp Biol Med (Maywood)

Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.

Published: December 2021

Chronic kidney disease (CKD) is a major contributor to the development of heart failure with preserved ejection fraction (HFpEF), whereas the underlying mechanism of cardiorenal HFpEF is still elusive. The aim of this study was to investigate the role of cardiac fibrosis in a rat model of cardiorenal HFpEF and explore whether treatment with Telmisartan, an inhibitor of renin-angiotensin-aldosterone system (RAAS), can ameliorate cardiac fibrosis and preserve diastolic function in cardiorenal HFpEF. Male rats were subjected to 5/6 subtotal nephrectomy (SNX) or sham operation (Sham), and rats were allowed four weeks to recover and form a stable condition of CKD. Telmisartan or vehicle was then administered p.o. (8 mg/kg/d) for 12 weeks. Blood pressure, brain natriuretic peptide (BNP), echocardiography, and cardiac magnetic resonance imaging were acquired to evaluate cardiac structural and functional alterations. Histopathological staining, real-time polymerase chain reaction (PCR) and western blot were performed to evaluate cardiac remodeling. SNX rats showed an HFpEF phenotype with increased BNP, decreased early to late diastolic transmitral flow velocity (E/A) ratio, increased left ventricular (LV) hypertrophy and preserved ejection fraction (EF). Pathology revealed increased cardiac fibrosis in cardiorenal HFpEF rats compared with the Sham group, while chronic treatment with Telmisartan significantly decreased cardiac fibrosis, accompanied by reduced markers of fibrosis (collagen I and collagen III) and profibrotic cytokines (α-smooth muscle actin, transforming growth factor-β1, and connective tissue growth factor). In addition, myocardial inflammation was decreased after Telmisartan treatment, which was in a linear correlation with cardiac fibrosis. Telmisartan also reversed LV hypertrophy and E/A ratio, indicating that Telmisartan can improve LV remodeling and diastolic function in cardiorenal HFpEF. In conclusion, cardiac fibrosis is central to the pathology of cardiorenal HFpEF, and RAAS modulation with Telmisartan is capable of alleviating cardiac fibrosis and preserving diastolic dysfunction in this rat model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649930PMC
http://dx.doi.org/10.1177/15353702211035058DOI Listing

Publication Analysis

Top Keywords

cardiac fibrosis
32
cardiorenal hfpef
24
diastolic function
12
function cardiorenal
12
preserved ejection
12
ejection fraction
12
cardiac
11
fibrosis
9
telmisartan
8
heart failure
8

Similar Publications

Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.

View Article and Find Full Text PDF

FOUR QUESTIONS ABOUT ATRIAL FIBRILLATION IN CARDIAC AMYLOIDOSIS. WHY IS THIS ARRHYTHMIA DIFFERENT FROM ALL OTHER ARRHYTHMIAS?

Can J Cardiol

January 2025

Brigham and Women's Hospital Amyloidosis Program and Section of Cardiology, Brigham and Women's Hospital, Boston MA 02115 USA; Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

AF is a common arrhythmia in cardiomyopathy, particularly when congestive heart failure is present. The neurohormonal activation in congestive heart failure may trigger fibrotic and other changes in the left atrium and the atrial stretch associated with heart failure may induce further atrial pathology and/ or directly trigger AF (8). By the time that patients with AF develop extensive fibrosis, the arrhythmia has been shown to be associated with a greater difficulty in maintaining sinus rhythm despite attempted ablation procedures.

View Article and Find Full Text PDF

Targeted mitochondrial function for cardiac fibrosis: An epigenetic perspective.

Free Radic Biol Med

January 2025

Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China; Center for Scientific Research and Experiment, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, PR China. Electronic address:

Mitochondria, commonly referred to as "energy factories"of cells, play a crucial role in the function and survival of cardiomyocytes. However, as research on cardiac fibrosis has advanced, mitochondrial dysfunction(including changes in energy metabolism, calcium ion imbalance, increased oxidative stress, and apoptosis)is now recognized as a significant pathophysiological pathway involved in cardiac remodeling and progression, which also negatively affects the function and structure of the heart. In recent years, research focusing on targeting mitochondria has gained significant attention, offering new approaches for treating cardiac fibrosis.

View Article and Find Full Text PDF

Purpose Of Review: The present review aims to address systemic sclerosis (SSc)-associated myocardial disease, a significant cause of morbidity and mortality, by examining the mechanisms of inflammation, microvascular dysfunction, and fibrosis that drive cardiac involvement. The objective is to elucidate critical risk factors and explore advanced diagnostic tools for early detection, enhancing patient outcomes by identifying those at highest risk.

Recent Findings: Recent studies underscore the importance of specific autoantibody profiles, disease duration, and cardiovascular comorbidities as key risk factors for severe cardiac manifestations in SSc.

View Article and Find Full Text PDF

TRADD-mediated pyroptosis contributes to diabetic cardiomyopathy.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.

Regulated cell death like pyroptosis is one vital cause of diabetic cardiomyopathy (DCM), which eventually leads to heart failure. Tumor necrosis factor (TNF) receptor-associated death domain protein (TRADD) is an adapter protein with multiple functions that participates in the pathophysiological progress of different cardiovascular disorders via regulating regulated cell death. Studies have shown that TRADD combines with receptor-interacting protein kinase 3 (RIPK3) and facilitates its activation, thereby mediating TNF-induced necroptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!