A Fragmentation-Based Graph Embedding Framework for QM/ML.

J Phys Chem A

Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.

Published: August 2021

We introduce a new fragmentation-based molecular representation framework "FragGraph" for QM/ML methods involving embedding fragment-wise fingerprints onto molecular graphs. Our model is specifically designed for delta machine learning (Δ-ML) with the central goal of correcting the deficiencies of approximate methods such as DFT to achieve high accuracy. Our framework is based on a judicious combination of ideas from fragmentation, error cancellation, and a state-of-the-art deep learning architecture. Broadly, we develop a general graph-network framework for molecular machine learning by incorporating the inherent advantages prebuilt into error cancellation methods such as the generalized Connectivity-Based Hierarchy. More specifically, we develop a QM/ML representation through a fragmentation-based attributed graph representation encoded with fragment-wise molecular fingerprints. The utility of our representation is demonstrated through a graph network fingerprint encoder in which a global fingerprint is generated through message passing of local neighborhoods of fragment-wise fingerprints, effectively augmenting standard fingerprints to also include the inbuilt molecular graph structure. On the 130k-GDB9 dataset, our method predicts an out-of-sample mean absolute error significantly lower than 1 kJ/mol compared to target G4(MP2) calculated energies, rivaling current deep learning methods with reduced computational scaling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.1c06152DOI Listing

Publication Analysis

Top Keywords

fragment-wise fingerprints
8
machine learning
8
error cancellation
8
deep learning
8
molecular
5
fragmentation-based graph
4
graph embedding
4
framework
4
embedding framework
4
framework qm/ml
4

Similar Publications

A Fragmentation-Based Graph Embedding Framework for QM/ML.

J Phys Chem A

August 2021

Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States.

We introduce a new fragmentation-based molecular representation framework "FragGraph" for QM/ML methods involving embedding fragment-wise fingerprints onto molecular graphs. Our model is specifically designed for delta machine learning (Δ-ML) with the central goal of correcting the deficiencies of approximate methods such as DFT to achieve high accuracy. Our framework is based on a judicious combination of ideas from fragmentation, error cancellation, and a state-of-the-art deep learning architecture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!