Pest management professionals aim to answer two primary questions for their customers: 1) 'Where/What is the pest?' and 2) 'How do I kill it?'. These two questions drive at the core of any pest management program. 2020 was an exciting year for entomology research, with much work being done on novel technologies and methods for detecting and controlling pests. The objectives of the current publication were to discuss papers published in 2020 that addressed the key pest management objectives of 1) monitoring and 2) controlling pest populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jme/tjab119 | DOI Listing |
Commun Biol
January 2025
U.S. Department of Agriculture, Agriculture Research Service, Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, USA.
The remarkable diversity of insect pigmentation offers a captivating avenue for studying evolution and genetics. In tephritids, understanding the molecular basis of mutant traits is also crucial for applied entomology, enabling the creation of genetic sexing strains through genome editing, thus facilitating sex-sorting before sterile insect releases. Here, we present evidence from classical and modern genetics showing that the black pupae (bp) phenotype in the GUA10 strain of Anastrepha ludens is caused by a large deletion at the ebony locus, removing the gene's entire coding region.
View Article and Find Full Text PDFJ Insect Physiol
January 2025
Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece.
Double-stranded RNA (dsRNA) mediated RNA interference (RNAi) is a tool in functional gene study and pest control. However, RNAi efficiency in Lepidoptera is low compared to the RNAi sensitive Coleoptera. Previous studies on RNAi in the silkworm Bombyx mori, the lepidopteran model insect, were performed by injection only.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.
Background: Booklice, belonging to the genus Liposcelis (Psocodea: Liposcelididae), commonly known as psocids, infest a wide range of stored products and are implicated in the transmission of harmful microorganisms such as fungi and bacteria. The olfactory system is critical for insect feeding and reproduction. Elucidating the molecular mechanisms of the olfactory system in booklice is crucial for developing effective control strategies.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China. Electronic address:
Autophagy is a conserved and unique degradation system in eukaryotic cells, which plays crucial roles in the growth, development and pathogenesis of Fungi. Despite that, it is poorly understood in Fusarium graminearum currently. Here, we identified an autophagy gene FgAtg27 from F.
View Article and Find Full Text PDFJ Invertebr Pathol
January 2025
Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), CONICET-Universidad Nacional de Mar del Plata, Centro de Asociación Simple CIC-PBA, Juan B. Justo 2550, 7600 Mar del Plata, Buenos Aires Province, Argentina.
Pomacea canaliculata is a highly successful invasive snail that shapes freshwater communities in both native and invaded habitats. We studied its digenean parasites from three freshwater bodies in its native distribution area in Buenos Aires Province, Argentina. An integrated approach was used to determine and describe the larval stages of digenean, including morphological, molecular, and histopathology analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!