Nanoscale hydroxyapatite (nHA) is considered as a promising drug carrier or therapeutic agent against malignant tumors. But the strong agglomeration tendency and lack of active groups seriously hamper their usage . To address these issues, we fabricated an organic-inorganic hybrid nanosystem composed of poly(acrylic acid) (PAA), nHA, and indocyanine green (ICG), and further modified with glucose to give a targeting nanosystem (GA@HAP/ICG-NPs). These hybrid nanoparticles (∼90 nm) showed excellent storage and physiological stability assisted by PAA and had a sustained drug release in an acidic tumor environment. cell experiments confirmed that glucose-attached particles significantly promoted cellular uptake and increased intracellular ICG and Ca concentrations by glucose transporter 1 (GLUT1)-mediated endocytosis. Subsequently, the excessive Ca induced cell or organelle damage and ICG triggered photothermal and photodynamic effects (PTT/PDT) under laser irradiation, resulting in enhanced cell toxicity and apoptosis. tests revealed that the hybrid nanosystem possessed good hemocompatibility and biosafety, facilitating circulation and usage. NIR imaging further showed that tumor tissues had more drug accumulation, resulting in the highest tumor growth inhibition (87.89%). Overall, the glucose-targeted hybrid nanosystem was an effective platform for collaborative therapy and expected to be further used in clinical trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c09852 | DOI Listing |
Biomed Pharmacother
January 2025
Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil. Electronic address:
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, remains a significant global health challenge. Currently, benznidazole (BNZ) is the primary treatment in many countries. However, this drug is limited by low bioavailability, significant host toxicity, and reduced efficacy in chronic disease phase.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Chair in Hybrid Nanosystems, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany.
Multilayered van der Waals (vdW) materials are semiconductors composed of atomically thin crystal layers, held together by weak vdW forces. They offer unique crystal structures and electronic properties, distinct from conventional semiconductors, making them a promising platform for linear and nonlinear optics. In this context, the large refractive indexes given by highly polarizable transition metals, combined with excitonic resonances and unconventional crystalline structures, provides a toolbox for exploring non-linear physics and strong light-matter interactions with unprecedented opportunities for nanoscale optics.
View Article and Find Full Text PDFJ Pharm Anal
November 2024
Institute of Innovation and Applied Research in Chinese Medicine; Department of Rheumatology of First Hospital, Hunan University of Chinese Medicine, Changsha, 410208, China.
Rheumatoid arthritis (RA) is a prevalent autoimmune disease characterized by chronic inflammation and excessive proliferation of the synovium. Currently, treatment options focus on either reducing inflammation or inhibiting synovial hyperplasia. However, these modalities are unsatisfactory in achieving the desired therapeutic outcomes.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
In the context of escalating energy demands and environmental sustainability, the paradigm of global energy systems is undergoing a transformative shift to innovative and reliable energy-harvesting techniques ranging from solar cells to triboelectric nanogenerators (TENGs) to hybrid energy systems, where a fever in the study of perovskite materials has been set off due to the excellent optoelectronic properties and defect tolerance features. This review begins with the basic properties of perovskite materials and the fundamentals of TENGs, including their working principles and general developing strategy, then delves into the key role of perovskite materials in promoting TENG-based hybrid technologies in terms of energy conversion. While spotlighting the coupling of triboelectric-optoelectronic effects in harnessing energy from a variety of sources, thereby transcending the limitations inherent to single-source energy systems, this review pays special attention to the strategic incorporation of perovskite materials into TENGs and TENG-based energy converting systems, which heralds a new frontier in enhancing efficiency, stability, and adaptability.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Biotechnology, University of Chemistry and Technology, Prague 166 28, Czech Republic.
Silver nanoparticles (AgNPs) are excellent antimicrobial agents and promising candidates for preventing or treating bacterial infections caused by antibiotic resistant strains. However, their increasing use in commercial products raises concerns about their environmental impact. In addition, traditional physicochemical approaches often involve harmful agents and excessive energy consumption, resulting in AgNPs with short-term colloidal stability and silver ion leaching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!