A new multi-point inflow pre-anoxic/oxic/anaerobic/anoxic/oxic (A1/O2/A3/A4/O5) sludge-membrane coupling process and pilot plant were developed and designed to solve the problem of nitrogen and phosphorus removal of low carbon and nitrogen (C/N) ratio domestic sewage in southern China. The removal effect and transformation rule of organic matter, nitrogen, and phosphorus in the system were studied by changing the distribution ratio of multi-point influent. The average C/N ratio of the influent was 2.09 and the influent distribution ratio was 1:1. When the temperature was 16-25 °C, the average concentrations of chemical oxygen demand (COD), ammonia nitrogen (NH- N), total nitrogen (TN), and total phosphorus (TP) in the effluent were 21.31 (±2.65), 0.60 (±0.24), 12.76 (±1.09), and 0.34 (±0.05) mg/L, respectively, and their average removals are 87.3 (±1.2)%, 98.7 (±0.4)%, 74.1 (±1.3)%, and 88.1 (±0.4)% respectively. When the low temperature was 12-15 °C, the average removals were 78.6 (±1.1)%, 90.5 (±1.3)%, 73.7 (±1.13)%, and 86.6 (±1.7)%, respectively. Compared with the traditional anaerobic/anoxic/aerobic (A2O) process under the same conditions, the TN removal was increased by 15.4%, and the TP removal was increased by 22.2%. This system has obvious advantages in treating wastewater with low C/N ratio, thereby solving the problem wherein the effluent of biological phosphorus removal from low C/N ratio domestic sewage was difficult when it was lower than 0.5 mg/L.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-15721-5 | DOI Listing |
Ann Surg Oncol
December 2024
Division of Breast Surgery, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyüan, Taiwan, R.O.C..
Background: We investigated the perioperative outcome and oncologic safety of performing nipple-sparing mastectomy (NSM) through a single axillary incision (NSM-SAI) compared with performing NSM through a conventional incision (NSM-C).
Methods: We retrospectively reviewed 725 patients who underwent NSM for breast cancer between January 2010 and December 2023; 333 patients who underwent NSM with immediate reconstruction (IR) were enrolled. Surgical outcomes and oncologic outcomes of NSM-C (n = 184), NSM performed through SAI with a freehand approach (NSM-SAI-F; n = 92), and with an endoscopic approach (NSM-SAI-E; n = 57) were demonstrated.
Water Res
December 2024
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550001, PR China; University of Chinese Academy of Sciences, College of Resources and Environment, Beijing 100049, PR China.
The rapid expansion of reservoirs, coupled with increasing eutrophication, has profoundly influenced regional and global carbon cycles. To precisely assess the carbon sink potential of reservoirs, it is crucial to quantify the decomposition of endogenous particulate organic carbon (POC) during the deposition and sinking of particulate matter in reservoirs. This is particularly important in the context of rising temperatures and intensified human activities.
View Article and Find Full Text PDFSci Total Environ
December 2024
The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
Land degradation due to salinization threatens ecosystem health. Phytoremediation, facilitated by functional microorganisms, has gained attention for improving saline-alkali soils. However, the relationship between the functional potential of rhizosphere microbes involved in multi-element cycling and soil nutrient pools remain unclear.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Satellite Application Center for Ecology and Environment, Ministry of Ecology and Environment, Beijing, China.
Plant litter decomposition is a significant ecosystem function that regulates nutrient cycling, soil fertility, and biomass production. It is heavily regulated by nutrient intake. The effects of exogenous nutrients on litter decomposition are not yet fully understood.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland.
Expanded insect production represents a source of post-breeding residues (frass) that can potentially be used as a soil additive. These types of biofertilizers are carriers of recirculated nutrients, as well as organic matter. In the present study, we investigated whether the bean waste (BW) and pea waste (PW) in the form of crushed seeds and post-production leftovers, naturally rich in proteins, were suitable as a substrate for rearing black soldier fly (Hermetia illucens) larvae.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!