Occurrence of Harmful Algal Blooms (HABs) creates a threat to aquatic ecosystem affecting the existing flora and fauna. Hence, the mitigation of HABs through an eco-friendly approach remains a challenge for environmentalists. The present study provides the genomic insights of Rhizobium strain AQ_MP, an environmental isolate that showed the capability of degrading Microcystis aeruginosa (Cyanobacteria) through lytic mechanisms. Genome sequence analysis of Rhizobium strain AQ_MP unraveled the algal lytic features and toxin degradative pathways in it. Functional genes of CAZymes such as glycosyltransferases (GT), glycoside hydrolases (GH), polysaccharide lyases (PL) which supports algal polysaccharide degradation (lysis) were present in Rhizobium strain AQ_MP. Genome analysis also clarified the presence of the glutathione metabolic pathway, which is the biological detoxification pathway responsible for toxin degradation. The conserved region mlrC, a microcystin toxin-degrading gene was also annotated in the genome. The study illustrated that Rhizobium strain AQ_MP harbored a wide range of mechanisms for the lysis of Microcystis aeruginosa cells and its toxin degradation. In future, this study finds promiscuity for employing Rhizobium strain AQ_MP species for bioremediation, based on its physiological and genomic analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-021-02496-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!