Purpose Of Review: Artificial intelligence (AI), machine learning, and technology-enabled remote patient care have evolved rapidly and have now been incorporated into many aspects of medical care. Transplantation is fortunate to have large data sets upon which machine learning algorithms can be constructed. AI are now available to improve pretransplant management, donor selection, and post-operative management of transplant patients.
Recent Findings: Changes in patient and donor characteristics warrant new approaches to listing and organ acceptance practices. Machine learning has been employed to optimize donor selection to identify patients likely to benefit from transplantation of higher risk organs, increasing organ discard and reducing waitlist mortality. These models have greater precisions and predictive ability than currently employed metrics including the Kidney Donor Profile Index and the expected posttransplant survival models. After transplant, AI tools have been developed to optimize immunosuppression management, track patients adherence, and assess graft survival.
Summary: AI and technology-enabled management tools are now available throughout the transplant journey. Unfortunately, those are frequently not available at the point of decision (patient listing, organ acceptance, posttransplant clinic), limiting utilization. Incorporation of these tools into the EMR, the Donor Net® organ offer system, and mobile devices is vital to ensure widespread adoption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8317681 | PMC |
http://dx.doi.org/10.1007/s40472-021-00336-z | DOI Listing |
Biomark Res
January 2025
Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, P.R. China.
Background: Disease progression within 24 months (POD24) significantly impacts overall survival (OS) in patients with follicular lymphoma (FL). This study aimed to develop a robust predictive model, FLIPI-C, using a machine learning approach to identify FL patients at high risk of POD24.
Methods: A cohort of 1,938 FL patients (FL1-3a) from seventeen centers nationwide in China was randomly divided into training and internal validation sets (2:1 ratio).
J Exp Clin Cancer Res
January 2025
School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.
Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.
View Article and Find Full Text PDFHereditas
January 2025
Emergency Department, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang Province, China.
Endometriosis is a complex gynecological condition characterized by abnormal immune responses. This study aims to explore the immunomodulatory effects of monoterpene glycosides from Paeonia lactiflora on endometriosis. Using the ssGSEA algorithm, we assessed immune cell infiltration levels between normal and endometriosis groups.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Peking, Beijing, 100023, People's Republic of China.
Background: Pancreatic cancer is a highly aggressive neoplasm characterized by poor diagnosis. Amino acids play a prominent role in the occurrence and progression of pancreatic cancer as essential building blocks for protein synthesis and key regulators of cellular metabolism. Understanding the interplay between pancreatic cancer and amino acid metabolism offers potential avenues for improving patient clinical outcomes.
View Article and Find Full Text PDFScand J Med Sci Sports
January 2025
Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
Physical activity (PA) reduces the risk of negative mental and physical health outcomes in older adults. Traditionally, PA intensity is classified using METs, with 1 MET equal to 3.5 mL O·min·kg.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!