The direct conversion of CO to value-added chemical commodities, thereby storing solar energy, offers a promising option for alleviating both the current energy crisis and global warming. Semiconductor-biological hybrid systems are novel approaches. However, the inherent defects of photocorrosion, photodegradation, and the toxicity of the semiconductor limit the application of these biohybrid systems. We report here that Rhodopseudomonas palustris was able to directly act as a living photosensitizer to drive CO to CH conversion by Methanosarcina barkeri under illumination after coculturing. Specifically, R. palustris formed a direct electric syntrophic coculture with M. barkeri. Here, R. palustris harvested solar energy, performed anoxygenic photosynthesis using sodium thiosulfate as an electron donor, and transferred electrons extracellularly to M. barkeri to drive methane generation. The methanogenesis of M. barkeri in coculture was a light-dependent process with a production rate of 4.73 ± 0.23 μM/h under light, which is slightly higher than that of typical semiconductor-biohybrid systems (approximately 4.36 μM/h). Mechanistic and transcriptomic analyses showed that electrons were transferred either directly or indirectly (via electron shuttles), subsequently driving CH production. Our study suggests that R. palustris acts as a natural photosensitizer that, in coculture with M. barkeri, results in a new way to harvest solar energy that could potentially replace semiconductors in biohybrid systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8776907PMC
http://dx.doi.org/10.1038/s41396-021-01078-7DOI Listing

Publication Analysis

Top Keywords

solar energy
12
methanosarcina barkeri
8
electric syntrophic
8
syntrophic coculture
8
biohybrid systems
8
coculture barkeri
8
barkeri
6
light-driven carbon
4
carbon dioxide
4
dioxide reduction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!