A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Protein supplementation during an energy-restricted diet induces visceral fat loss and gut microbiota amino acid metabolism activation: a randomized trial. | LitMetric

Interactions between diet and gut microbiota are critical regulators of energy metabolism. The effects of fibre intake have been deeply studied but little is known about the impact of proteins. Here, we investigated the effects of high protein supplementation (Investigational Product, IP) in a double blind, randomised placebo-controled intervention study (NCT01755104) where 107 participants received the IP or an isocaloric normoproteic comparator (CP) alongside a mild caloric restriction. Gut microbiota profiles were explored in a patient subset (n = 53) using shotgun metagenomic sequencing. Visceral fat decreased in both groups (IP group: - 20.8 ± 23.2 cm; CP group: - 14.5 ± 24.3 cm) with a greater reduction (p < 0.05) with the IP supplementation in the Per Protocol population. Microbial diversity increased in individuals with a baseline low gene count (p < 0.05). The decrease in weight, fat mass and visceral fat mass significantly correlated with the increase in microbial diversity (p < 0.05). Protein supplementation had little effects on bacteria composition but major differences were seen at functional level. Protein supplementation stimulated bacterial amino acid metabolism (90% amino-acid synthesis functions enriched with IP versus 13% in CP group (p < 0.01)). Protein supplementation alongside a mild energy restriction induces visceral fat mass loss and an activation of gut microbiota amino-acid metabolism.Clinical trial registration: NCT01755104 (24/12/2012). https://clinicaltrials.gov/ct2/show/record/NCT01755104?term=NCT01755104&draw=2&rank=1 .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8329187PMC
http://dx.doi.org/10.1038/s41598-021-94916-9DOI Listing

Publication Analysis

Top Keywords

gut microbiota
12
protein supplementation
8
visceral fat
8
supplementation energy-restricted
4
energy-restricted diet
4
diet induces
4
induces visceral
4
fat loss
4
loss gut
4
microbiota amino
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!