How does the brain anticipate information in language? When people perceive speech, low-frequency (<10 Hz) activity in the brain synchronizes with bursts of sound and visual motion. This phenomenon, called cortical stimulus-tracking, is thought to be one way that the brain predicts the timing of upcoming words, phrases, and syllables. In this study, we test whether stimulus-tracking depends on domain-general expertise or on language-specific prediction mechanisms. We go on to examine how the effects of expertise differ between frontal and sensory cortex. We recorded electroencephalography (EEG) from human participants who were experts in either sign language or ballet, and we compared stimulus-tracking between groups while participants watched videos of sign language or ballet. We measured stimulus-tracking by computing coherence between EEG recordings and visual motion in the videos. Results showed that stimulus-tracking depends on domain-general expertise, and not on language-specific prediction mechanisms. At frontal channels, fluent signers showed stronger coherence to sign language than to dance, whereas expert dancers showed stronger coherence to dance than to sign language. At occipital channels, however, the two groups of participants did not show different patterns of coherence. These results are difficult to explain by entrainment of endogenous oscillations, because neither sign language nor dance show any periodicity at the frequencies of significant expertise-dependent stimulus-tracking. These results suggest that the brain may rely on domain-general predictive mechanisms to optimize perception of temporally-predictable stimuli such as speech, sign language, and dance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371925 | PMC |
http://dx.doi.org/10.1523/ENEURO.0065-21.2021 | DOI Listing |
Phys Med
December 2024
National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China. Electronic address:
Purpose: Automated treatment plan generation is essential for magnetic resonance imaging (MRI)-guided adaptive radiotherapy (MRIgART) to ensure standardized treatment-plan quality. We proposed a novel cross-technique transfer learning (CTTL)-based strategy for online MRIgART autoplanning.
Method: We retrospectively analyzed the data from 210 rectal cancer patients.
J Vis
December 2024
School of Psychological Science, University of Bristol, Bristol, UK.
Being able to detect changes in our visual environment reliably and quickly is important for many daily tasks. The motion silencing effect describes a decrease in the ability to detect feature changes for faster moving objects compared with stationary or slowly moving objects. One theory is that spatiotemporal receptive field properties in early vision might account for the silencing effect, suggesting that its origins are low-level visual processing.
View Article and Find Full Text PDFTransplant Direct
January 2025
Department of Urology and Transplantation Surgery, Nantes University Hospital, Nantes, France.
Background: In organ transplantation, cold ischemia is associated with sterile inflammation that subsequently conditions adaptive immunity directed against the grafts during revascularization. This inflammation is responsible for venous thrombosis, which is the main postoperative complication affecting graft function. Our aim was to investigate the modulation of immune responses and endothelial function of pancreatic grafts during cold ischemia using different preservation modalities.
View Article and Find Full Text PDFChembiochem
December 2024
Department de Farmacia I Tecnología Farmacèutica, I Fisicoquímica, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
Targeting E3 ligases is a challenging area in drug discovery. Despite the human genome encoding for more than 600 E3 ubiquitin ligases, only a handful of E3 ligases have been pharmacologically modulated or exploited for targeted protein degradation (TPD) strategies. The main obstacle for hijacking these E3 ligases is the lack of small-molecule ligands.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
January 2025
Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Angelman Syndrome (AS) is a neurodevelopmental disorder caused by the loss of function of ubiquitin-protein ligase E3A (UBE3A), resulting in marked changes in synaptic plasticity. In AS mice, a dysregulation of Ca/calmodulin-dependent protein kinase II alpha (CaMKIIα) was previously described. This has been convincingly validated through genetic rescue of prominent phenotypes in mouse cross-breeding experiments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!