Objective: To investigate the optic nerve and macular parameters of children who recovered from COVID-19 compared with healthy children using optical coherence tomography (OCT).

Design: Cohort study.

Setting: Hospital Clinico San Carlos, Madrid.

Patients: Children between 6 and 18 years old who recovered from COVID-19 with laboratory-confirmed SARS-CoV-2 infection and historical controls were included.

Interventions: All patients underwent an ophthalmological examination, including macular and optic nerve OCT. Demographic data, medical history and COVID-19 symptoms were noted.

Main Outcome Measures: Peripapillary retinal nerve fibre layer thickness, macular retinal nerve fibre layer thickness, macular ganglion cell layer thickness and retinal thickness.

Results: 90 patients were included: 29 children who recovered from COVID-19 and 61 controls. Patients with COVID-19 presented an increase in global peripapillary retinal nerve fibre layer thickness (mean difference 7.7; 95% CI 3.4 to 12.1), temporal superior (mean difference 11.0; 95% CI 3.3 to 18.6), temporal inferior (mean difference 15.6; 95% CI 6.5 to 24.7) and nasal (mean difference 9.8; 95% CI 2.9 to 16.7) sectors. Macular retinal nerve fibre layer analysis showed decreased thickness in the nasal outer (p=0.011) and temporal inner (p=0.036) sectors in patients with COVID-19, while macular ganglion cell layer thickness increased in these sectors (p=0.001 and p=0.015, respectively). No differences in retinal thickness were noted.

Conclusions: Children with recent history of COVID-19 present significant changes in peripapillary and macular OCT analyses.

Download full-text PDF

Source
http://dx.doi.org/10.1136/archdischild-2021-321803DOI Listing

Publication Analysis

Top Keywords

retinal nerve
20
nerve fibre
20
fibre layer
20
layer thickness
20
recovered covid-19
16
ganglion cell
12
cell layer
12
children recovered
12
layer
8
covid-19
8

Similar Publications

Retinal Vasculitis as a Rare Presentation of Microscopic Polyangiitis.

Cureus

December 2024

Internal Medicine, Unidade Local de Saúde de Coimbra, Coimbra, PRT.

Microscopic polyangiitis (MPA) is a rare, autoimmune, small-vessel vasculitis usually described with the presence of perinuclear antineutrophil cytoplasmic antibodies (p-ANCA). It encompasses a broad spectrum of clinical features, including fatigue, weight loss, fever, arthralgia, skin lesions, and involvement of the lungs or kidneys. Ocular manifestations, however, are extremely rare.

View Article and Find Full Text PDF

Background: To compare structural and vascular parameters between advanced pseudoexfoliation glaucoma (PXG) and primary open-angle glaucoma (POAG).

Methods: One hundred and six eyes of 81 patients were enrolled in this cross-sectional study. All patients underwent complete ophthalmic examination and measurement of the thickness of the peripapillary retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC).

View Article and Find Full Text PDF

Background: The intestinal microbiota regulates normal brain physiology and the pathogenesis of several neurological disorders. While prior studies suggested that this regulation operates through immune cells, the underlying mechanisms remain unclear. Leveraging two well characterized murine models of low-grade glioma (LGG) occurring in the setting of the neurofibromatosis type 1 (NF1) cancer predisposition syndrome, we sought to determine the impact of the gut microbiome on optic glioma progression.

View Article and Find Full Text PDF

Purpose: To assess the diagnostic capability of pattern electroretinography (PERG) and varying circumpapillary optical coherence tomography (OCT) scan diameters in glaucoma suspects (GS).

Methods: This is a prospective, cross-sectional study. Circumpapillary retinal nerve fiber layer thickness (RNFLT) was measured using spectral domain OCT in 49 eyes from 26 patients (36 normal, 13 GS) in three circle diameters (3.

View Article and Find Full Text PDF

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!