Long non-coding RNA ZFAS1 is down-regulated in sepsis. However, whether ZFAS1 participates in sepsis-induced cardiomyopathy (SIC) remains largely unknown. LPS injection to rats was used to establish an sepsis model, while LPS stimulation with H9C2 cell was used to mimic an sepsis-induced myocardial injury model. Western blots and quantitative RT-PCR were performed to evaluate protein and mRNA levels, respectively. ELISA was conducted to determine cytokine levels in supernatant. Flow cytometry was used to test apoptosis. Dual-luciferase assay was performed to validate binding between ZFAS1 and miR-34b-5p, miR-34b-5p and SIRT1. Our data revealed that ZFAS1 and SIRT1 were down-regulated, while miR-34b-5p was up-regulated in LPS-induced H9C2 cells. Inhibition of miR-34b-5p or overexpression of ZFAS1 alleviated inflammatory response and cell apoptosis in LPS-stimulated H9C2 cells. A mechanism study revealed that ZFAS1 sponged miR-34b-5p and thus elevated expression of SIRT1, which was prohibited by miR-34b-5p. ZFAS1 alleviated inflammatory response and cell apoptosis in LPS-stimulated H9C2 cells via the miR-34b-5p/SIRT1 axis, providing novel potential therapeutic targets for SIC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8419299 | PMC |
http://dx.doi.org/10.1177/17534259211034221 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan.
Cardiac hypertrophy is a significant complication of diabetes, often triggered by hyperglycemia. Glucagon-like peptide-1 (GLP-1) receptor agonists alleviate cardiac hypertrophy, but their efficacy diminishes under GLP-1 resistance. Syringaldehyde (SA), a natural phenolic compound, may activate GLP-1 receptors and mitigate hypertrophy.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
Background/objectives: Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses.
Methods: We generated a mouse model of SCM induced by lipopolysaccharide (LPS) and then obtained comprehensive metabolic and genetic data from SCM mouse hearts using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and RNA sequencing (RNA-seq).
Chin J Nat Med
January 2025
Department of Pharmacy, The Fourth College of Clinical Medicine, Xinjiang Medical University, Urumqi 830000, China; Department of Pharmacy, Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Urumqi 830000, China. Electronic address:
Tianxiangdan (TXD), a traditional Chinese herbal remedy, demonstrates efficacy in mitigating myocardial ischemia-reperfusion (I/R)-induced damage. This study employed network pharmacology to evaluate the therapeutic targets and mechanisms of TXD in treating I/R. High-performance liquid chromatography-mass spectrometry (HPLC-MS) identified 86 compounds in TXD.
View Article and Find Full Text PDFAnn Clin Lab Sci
November 2024
Emergency Department, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, Zhejiang, China
Objective: Myocardial injury is a prevalent complication of sepsis. This study aims to shed light on the role of Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) in regulating Fatty Acid Synthase (FASN) to identify the intrinsic molecular mechanisms of sepsis-induced myocardial injury.
Method: H9c2 cells were treated with Lipopolysaccharide (LPS) to model sepsis-induced cardiomyocyte injury and were subsequently divided into seven groups: Control, LPS, LPS+sh-NC, LPS+sh-ACSL4, LPS+sh-ACSL4+Erastin, LPS+sh-ACSL4+oe-NC, and LPS+sh-ACSL4+oe-FASN.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!