Vocal fold dynamics in a synthetic self-oscillating model: Contact pressure and dissipated-energy dose.

J Acoust Soc Am

Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York 13699, USA.

Published: July 2021

The energy dissipated during vocal fold (VF) contact is a predictor of phonotrauma. Difficulty measuring contact pressure has forced prior energy dissipation estimates to rely upon generalized approximations of the contact dynamics. To address this shortcoming, contact pressure was measured in a self-oscillating synthetic VF model with high spatiotemporal resolution using a hemilaryngeal configuration. The approach yields a temporal resolution of less than 0.26 ms and a spatial resolution of 0.254 mm in the inferior-superior direction. The average contact pressure was found to be 32% of the peak contact pressure, 60% higher than the ratio estimated in prior studies. It was found that 52% of the total power was dissipated due to collision. The power dissipated during contact was an order of magnitude higher than the power dissipated due to internal friction during the non-contact phase of oscillation. Both the contact pressure magnitude and dissipated power were found to be maximums at the mid anterior-posterior position, supporting the idea that collision is responsible for the formation of benign lesions, which normally appear at the middle third of the VF.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8298101PMC
http://dx.doi.org/10.1121/10.0005596DOI Listing

Publication Analysis

Top Keywords

contact pressure
24
power dissipated
12
contact
9
vocal fold
8
pressure
6
dissipated
5
fold dynamics
4
dynamics synthetic
4
synthetic self-oscillating
4
self-oscillating model
4

Similar Publications

Lattice defect engineering advances n-type PbSe thermoelectrics.

Nat Commun

January 2025

School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, Australia.

Te-free thermoelectrics have garnered significant interest due to their immense thermoelectric potential and low cost. However, most Te-free thermoelectrics have relatively low performance because of the strong electrical and thermal transport conflicts and unsatisfactory compatibility of interfaces between device materials. Here, we develop lattice defect engineering through Cu doping to realize a record-high figure of merit of ~1.

View Article and Find Full Text PDF

Aim: To explore the impact of intergenerational relationships on the social resilience of elderly populations in Arab societies. Additionally, the study aimed to identify the factors that influence the quality of these relationships and their role in enhancing or diminishing the resilience of older adults.

Design: A qualitative study.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the effect of hypoxia and hypobaric conditions on refraction and central corneal thickness on healthy corneas during an ascent without oxygen supplementation above 7000 m (23 000 ft).

Methods: Twelve multinational mountaineers were included in a prospective observational cohort study during an expedition to the Korzhenevskoi Peak (7105 m). The two patients excluded from the study had a history with keratoconus or were current wearers of rigid contact lenses.

View Article and Find Full Text PDF

The EFSA Panel on Food Contact Materials (FCM) assessed the safety of the recycling process NGR LSP (EU register number RECYC328). The input is hot washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post-consumer PET containers, with no more than 5% PET from non-food consumer applications. The flakes are dried (step 2), melted in an extruder (step 3) and decontaminated during a melt-state polycondensation step under high temperature and vacuum (step 4).

View Article and Find Full Text PDF

Purpose: This study aims to evaluate the effects of taper angle and the number of insertion-removal cycles on the retention force of 4 mol% yttria partially stabilized zirconia (4Y-PSZ) double crowns over time.

Materials And Methods: Primary and secondary crowns were fabricated using 4Y-PSZ with taper angles of 2°, 4°, and 6° (n=15). Retention force during crown removal was measured after applying 50-N and 100-N loads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!