The acoustics of the bassoon has been the subject of relatively few studies compared with other woodwind instruments. One reason for this may lie in its complicated resonator geometry, which includes irregularly spaced toneholes with chimney heights ranging from 3 to 31 mm. The current article evaluates the effect of the open and closed tonehole lattice (THL) on the acoustic response of the bassoon resonator. It is shown that this response can be divided into three distinct frequency bands that are determined by the open and closed THL: below 500 Hz, 500-2200 Hz, and above 2200 Hz. The first is caused by the stopband of the open THL, where the low frequency effective length of the instrument is determined by the location of the first open tonehole. The second is due to the passband of the open THL, such that the modes are proportional to the total length of the resonator. The third is due to the closed THL, where part of the acoustical power is trapped within the resonator. It is proposed that these three frequency bands impact the radiated spectrum by introducing a formant in the vicinity of 500 Hz and suppressing radiation above 2200 Hz for most first register fingerings.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0005627DOI Listing

Publication Analysis

Top Keywords

open closed
12
tonehole lattice
8
frequency bands
8
closed thl
8
open thl
8
open
6
thl
5
bassoon tonehole
4
lattice links
4
links open
4

Similar Publications

Growth of microbes in competitive lifestyles promotes increased ARGs in soil microbiota: insights based on genetic traits.

Microbiome

January 2025

Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

Background: The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.

View Article and Find Full Text PDF

We derive the compact closed forms of local quantum uncertainty (LQU) and local quantum Fisher information (LQFI) for hybrid qubit-qutrit axially symmetric (AS) states. This allows us to study the quantum correlations in detail and present some essentially novel results for spin-(1/2, 1) systems, the Hamiltonian of which contains ten independent types of physically important parameters. As an application of the derived formulas, we study the behavior of these two quantum correlation measures at thermal equilibrium.

View Article and Find Full Text PDF

In the majority of aerosol drug deposition modelling efforts, the particles are approximated by regular spheres. However, microscope images acquired after drug formulation available in the open literature suggest that their shape is not regular in most cases. This work aimed to combine experimental measurements and numerical simulations to reveal the shape factors of the particles of commercialized aerosol drugs and the effect of non-sphericity on the lung deposition distribution of these drugs.

View Article and Find Full Text PDF

Visible-Light-Driven Fluorescence Turn-on Photoswitches With Near Quantitative Photocyclization Yield.

Adv Sci (Weinh)

January 2025

School of Materials Science and Engineering, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, P. R. China.

Photoswitchable fluorescent materials have gained significant attention for their potential in advanced information encryption and anti-counterfeiting applications. However, the common use of UV light to trigger the isomerization processes leads to photobleaching and poor fatigue resistance. Visible-light-driven fluorescent photoswitches are highly desirable, but achieving high cyclization yield remains challenging.

View Article and Find Full Text PDF

Highly polarized single-crystal organic light-emitting devices with low turn-on voltage and high brightness.

Mater Horiz

January 2025

Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Beijing Advanced Innovation Center for Imaging Theory and Technology, Capital Normal University, Beijing 100048, P. R. China.

Linearly-polarized organic electroluminescent devices have gained significant attention due to their potential applications across various fields. However, traditional thin-film organic light-emitting diodes (OLEDs) face significant challenges, primarily due to the necessity of incorporating complex optical elements. In this study, we present linearly-polarized OLEDs (LP-OLEDs) based on organic single crystals that we have designed and prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!