A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An apparatus for measuring nonlinear viscoelasticity of minerals at high temperature. | LitMetric

An apparatus for measuring nonlinear viscoelasticity of minerals at high temperature.

Rev Sci Instrum

Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom.

Published: July 2021

We describe a high-temperature, uniaxial creep apparatus designed to investigate nonlinear attenuation of materials over a wide range of temperatures (25-1300 °C) using forced oscillations combined with a bias stress. This apparatus is primarily designed for investigation of minerals and rocks with high melting temperatures. An oscillatory compressional stress is used to determine attenuation and Young's modulus at frequencies of 10-10 Hz and high stress amplitudes (>0.1 MPa). Large bias stresses are applied in addition to the oscillatory stresses such that attenuation tests are conducted simultaneously with the ongoing creep. The complex compliance of the apparatus was characterized by conducting calibration tests on orientated crystals of sapphire. The real part of the apparatus compliance exhibits a dependence on sample length and frequency, whereas the imaginary part is only dependent on frequency. The complex compliance is not dependent on the oscillation amplitude or the bias stress. We assess the accuracy and precision of this calibration by comparing measurements of the attenuation and Young's modulus of aluminum and acrylic to previously published values. We outline a set of criteria defining the conditions over which this apparatus can precisely determine the attenuation and Young's modulus of a sample based on the sample length and expected values of attenuation and Young's modulus.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0035699DOI Listing

Publication Analysis

Top Keywords

attenuation young's
16
young's modulus
16
apparatus designed
8
bias stress
8
determine attenuation
8
complex compliance
8
sample length
8
apparatus
6
attenuation
6
apparatus measuring
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!