Electrocatalyst surfaces prepared under ultrahigh vacuum (UHV) conditions can create model surfaces to better connect theoretical calculations with experimental studies. The development of a single crystal sample holder and inert electrochemical cells prepared with modularity and chemical stability in mind would allow for expensive single crystals to be reused indefinitely in both UHV and electrochemical settings. This sample holder shows reproducible surface preparations for single crystal samples and consistent electrochemical experiments without the introduction of impurities into the surface. The presented setup has been used as a critical piece for the characterization of Cu(111) surfaces under CO electrochemical reduction reaction conditions as a test case.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0057822DOI Listing

Publication Analysis

Top Keywords

single crystal
12
sample holder
12
development single
8
crystal sample
8
ultrahigh vacuum
8
electrochemical
5
holder interfacing
4
interfacing ultrahigh
4
vacuum electrochemical
4
electrochemical experimentation
4

Similar Publications

ThCTi@(6)-C: Th═C Double Bond in a Mixed Actinide-Transition Metal Cluster.

J Am Chem Soc

January 2025

College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

A thorium-carbon double bond that corresponds to the sum of theoretical covalent double bond radii has long been sought after in the study of actinide-ligand multiple bonding as a synthetic target. However, the stabilization of this chemical bond remains a great challenge to date, in part because of a relatively poor energetic matching between 5f-/6d- orbitals of thorium and the 2s-/2p- frontier orbitals of carbon. Herein, we report the successful synthesis of a thorium-carbon double bond in a carbon-bridged actinide-transition metal cluster, i.

View Article and Find Full Text PDF

Two Co(II) mixed-ligand metal-organic frameworks (MOFs) based on 2-methylimidazole and trimesate were synthesised at room temperature. The structure and properties of the two MOFs, named material Deutsches Elektronen Synchrotron-1 and -2 (mDESY-1 and mDESY-2), were verified by single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), SQUID magnetic susceptibility and N adsorption. The structural analysis indicates that mDESY-1 is a 3D ionic framework with 2-methyl-1-imidazol-3-ium counterions residing in its pores, while mDESY-2 is a 2D neutral framework isostructural to ITH-1, with water as a co-crystallising solvent.

View Article and Find Full Text PDF

The current intense study of ferroelectric nematic liquid crystals was initiated by the observation of the same ferroelectric nematic phase in two independently discovered organic, rod-shaped, mesogenic compounds, RM734 and DIO. We recently reported that the compound RM734 also exhibits a monotropic, low-temperature, apolar phase having reentrant isotropic symmetry (the I phase), the formation of which is facilitated to a remarkable degree by doping with small (below 1%) amounts of the ionic liquid BMIM-PF. Here we report similar phenomenology in DIO, showing that this reentrant isotropic behavior is not only a property of RM734 but is rather a more general, material-independent feature of ferroelectric nematic mesogens.

View Article and Find Full Text PDF

Viridium: A Stable Radical and Its π-Dimerization.

J Am Chem Soc

January 2025

Institut de Chimie de Strasbourg, CNRS UMR 7177, Université de Strasbourg, 4, rue Blaise Pascal, Strasbourg 67000, France.

The discovery of a stable organic radical formed under mild, clean, and efficient light-mediated conditions is reported. The structure of the stable acridinium-based radical photoproduct was unambiguously established by single-crystal X-ray diffraction, mass spectrometry, and in solution by EPR, UV/vis, and NMR spectroscopies. The photochemical mechanism of its formation has been elucidated by photophysical experiments coupled with EPR experiments and theoretical investigations.

View Article and Find Full Text PDF

Using Multi-Omics Methods to Understand Gouty Arthritis.

Curr Rheumatol Rev

January 2025

Department of Rheumatology, Beijing Jishuitan Hospital, Guizhou Hospital, China.

Gouty arthritis is a common arthritic disease caused by the deposition of monosodium urate crystals in the joints and the tissues around it. The main pathogenesis of gout is the inflammation caused by the deposition of monosodium urate crystals. Omics studies help us evaluate global changes in gout during recent years, but most studies used only a single omics approach to illustrate the mechanisms of gout.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!