Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The spectroscopy and photo-induced dissociation of flavin mononucleotide anions in vacuo are investigated over the 300-500 nm wavelength range. Comparison of the dependence of fragment ion yields as a function of deposited photon energy with calculated dissociation energies and collision-induced dissociation measurements performed under single-collision conditions suggests that a substantial fraction of photo-activated ions decompose through non-statistical fragmentation pathways. Among these pathways is the dominant photo-induced fragmentation channel, the loss of a fragment identified as formylmethylflavin. The fragment ion specific action spectra reveal electronic transition energies close to those for flavins in solution and previously published gas-phase measurements, although the photo-fragment yield upon excitation of the S ← S transition appears to be suppressed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0056415 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!