Integration of ZnO nanorods with MOS capacitor for self-powered force sensors and nanogenerators.

Nanotechnology

Institute for Integrated Micro and Nano Systems, School of Engineering, University of Edinburgh, Scottish Microelectronics Centre, Edinburgh, United Kingdom.

Published: August 2021

In this work, we present a novel force-sensing device with zinc oxide nanorods (ZnO NRs) integrated with a metal-oxide-semiconductor (MOS) capacitor and encapsulated with Kapton tape. The details of the fabrication process and working principle of the integrated ZnO NRs-MOS capacitor as a force sensor and nanogenerator have been discussed. The fabricated ZnO-MOS device is tested for both the open-circuit and resistor-connected mode. For an input force in the range of 1-32 N, the open-circuit output voltage of the device is measured to be in the range of 60-100 mV for different device configurations. In the resistor-connected mode, the maximum output power of 0.6 pW is obtained with a 1 MΩ external resistor and input force of 8 N. In addition, the influence of different seed layers (Ag and ZnO) and the patterning geometry of the ZnO nanorods on the output voltage of ZnO-MOS device have been investigated by experiments. An equivalent circuit model of the device has been developed to study the influence of the geometry of ZnO NRs and Kapton tape on the ZnO-MOS device voltage output. This study could be an example of integrating piezoelectric nanomaterials on traditional electronic devices and could inspire novel designs and fabrication methods for nanoscale self-powered force sensors and nanogenerators.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac19d7DOI Listing

Publication Analysis

Top Keywords

zno-mos device
12
zno nanorods
8
mos capacitor
8
self-powered force
8
force sensors
8
sensors nanogenerators
8
zno nrs
8
kapton tape
8
resistor-connected mode
8
input force
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!