Hydrogel polymers have been used to enhance water and nutrient retention in agricultural soils. The incorporation of nanoparticles to yield composite hydrogels has also gained substantial momentum over the years. The aim of the research was to investigate the effect of hydrogel-nano natural char composite (reinforced starch-based hydrogels with natural char nanoparticles) at three levels 0%, 0.3% and 0.6% (w/w) on nutritional and morphological responses of tomato plant (Lycopersicon esculentum Mill.) as well as on some soil biological properties under water-deficit stress at three levels 50% water-holding capacity (WHC) (severe stress), 75% WHC (mild stress), and 85% WHC (non-stress conditions). The different levels of nano-composite and water deficit stress significantly (P < 0.05) affected plant morpho-nutritional indices and soil microbial traits. Water-deficit stress decreased all measured parameters in this assay. However, the use of nanocomposite reduced the negative effects of water-deficit stress on tomato growth and development. The magnitude of the responses to the nanocomposite treatment depended on the concentration of applied nanocomposite and stress severity with the most positive effects on the growth (22-45% increase) and nutritional indices (P, Fe, and Zn concentration) (16-29% increase) of tomato at level 0.3% hydrogel nanocomposite and 85% WHC and on soil respiration rate (61% increase) and microbial population size ( 89% increase) at the level 0.6% hydrogel nanocomposite and 75% WHC. Accordingly, it is suggested that the application of hydrogel-nano natural char composite as a promising soil amendment, if used correctly, can be a successful method to maintain soil moisture content (improved tomato growth), plant nutrients, and soil microbial activity in the tomato growing medium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2021.112576DOI Listing

Publication Analysis

Top Keywords

natural char
12
composite reinforced
8
char nanoparticles
8
soil biological
8
biological properties
8
tomato plant
8
three levels
8
hydrogel composite
4
reinforced natural
4
nanoparticles improvement
4

Similar Publications

Pathogens play a key role in individual function and the dynamics of wild populations, but the link between pathogens and individual performance has rarely been investigated in the wild. Migrating salmonids offer an ideal study system to investigate how infection with pathogens affects performance given that climate change and fish farming portend increasing prevalence of pathogens in wild populations. To test for effects of pathogen burden on the performance of a migrating salmonid, we paired data from individual brown trout tagged with acoustic accelerometer transmitters and gill biopsies to investigate how pathogen infection affected whole animal activity during the spawning migration.

View Article and Find Full Text PDF

Fish reproductive phenology shifts with increasing temperature and year.

Biol Lett

January 2025

Department of Forestry and Natural Resources, Purdue University, Forestry Building, 195 Marsteller Street, West Lafayette, IN 47907, USA.

Temperate fishes often spawn in response to environmental cues, such as temperature, thereby facilitating larval emergence concurrent with suitable biotic and abiotic conditions, such as plankton blooms. Climatic changes may alter the reproductive phenology of spring- and autumn-spawning freshwater fish populations. Such effects may depend on the sensitivity of reproductive phenology to ambient temperatures.

View Article and Find Full Text PDF

Barriers and facilitators to healthy eating among college students.

Nutr Res

January 2025

Department of Food Science and Human Nutrition, G.M. Trout FSHN Building, College of Agriculture & Natural Resources, Michigan State University, East Lansing, MI, USA.

Young adulthood is an influential life stage for developing lifelong eating patterns, yet limited research characterizes dietary intake among young adults. This cross-sectional study assessed dietary intake and characteristics associated with nutrition knowledge and healthy food consumption among college students. We hypothesized that healthy food intake would be lower than United States (U.

View Article and Find Full Text PDF

Fire Resistant Adhesive from Chitosan.

Biomacromolecules

January 2025

Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.

Chitosan is one of the most abundant biopolymers on earth. It is used as a nontoxic alternative in a wide range of medicines, packaging, adhesives, and flame retardants. Chitosan is poorly soluble in neutral or alkaline solutions, but it dissolves in solutions of weak acids, such as acetic acid or citric acid, both of which occur naturally.

View Article and Find Full Text PDF

Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!