High contribution of vehicle emissions to fine particulate pollutions in Lanzhou, Northwest China based on high-resolution online data source appointment.

Sci Total Environ

Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; Collaborative Innovation Center for Western Ecological Safety, Lanzhou University, Lanzhou 730000, China.

Published: December 2021

The quantitative estimation of urban particulate matter (PM) sources is essential but limited because of various reasons. The hourly online data of PM, organic carbon (OC), elemental carbon (EC), water-soluble ions, and elements from December 2019 to November 2020 was used to conduct PM source appointment, with an emphasis on the contribution of vehicle emissions to fine PM pollution in downtown Lanzhou, Northwest China. Vehicle emissions, secondary formation, mineral dust, and coal combustion were found to be the major PM sources using the positive matrix factorization model. The seasonal mean PM were estimated to be 72.8, 39.2, 24.3, and 43.6 μg·m and vehicle emissions accounted for 35.7%, 25.8%, 30.0%, and 56.6% in winter, spring, summer, and autumn, respectively. Vehicle emissions were the largest source of PM considering the high PM pollution in winter and its significantly large contribution in autumn. Furthermore, the contribution of vehicle emissions increased with increasing PM in winter and autumn. Vehicle emissions were also the most important source of EC, accounting for 70.3%, 91.0%, 83.5%, and 93.7% of the total EC in winter, spring, summer, and autumn, respectively. With the reduction in industrial emissions and increase in vehicle numbers in China in recent years, vehicle emissions are going to be the largest source of urban PM pollution. To sustainably improve air quality in Lanzhou and other Chinese cities, efforts should be made to control vehicle emissions such as promoting clean-energy vehicles and encouraging public transportation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.149310DOI Listing

Publication Analysis

Top Keywords

vehicle emissions
36
contribution vehicle
12
vehicle
10
emissions
10
emissions fine
8
lanzhou northwest
8
northwest china
8
online data
8
source appointment
8
winter spring
8

Similar Publications

Impact of electric vehicle battery recycling on reducing raw material demand and battery life-cycle carbon emissions in China.

Sci Rep

January 2025

Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, Guangdong Province, People's Republic of China.

The rapid growth of electric vehicles (EVs) in China challenges raw material demand. This study evaluates the impact of recycling and reusing EV batteries on reducing material demand and carbon emissions. Integrating a national-level vehicle stock turnover model with life-cycle carbon emission assessment, we found that replacing nickel-cobalt-manganese batteries with lithium iron phosphate batteries with battery recycling can reduce lithium, cobalt, and nickel demand between 2021 and 2060 by up to 7.

View Article and Find Full Text PDF

Airborne particulate matter (PM) poses significant environmental and health challenges, particularly in urban areas. This study investigated the characteristics of water-soluble organic compounds (WSOC) in PM (PM with an aerodynamic diameter of 2.5 μm or less) in Singapore, a tropical Asian city-state, over a six-month period.

View Article and Find Full Text PDF

Amid ambitious net-zero goals and growing demands for freight logistics, addressing the climate challenges posed by the heavy-duty truck (HDT) sector is an urgent and pivotal task. This study develops an integrated HDT model by incorporating vehicle dynamic simulation and life cycle analysis to quantify energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership associated with three emerging powertrain technologies in various truck use scenarios in China, including battery electric, fuel cell electric, and hydrogen combustion engine trucks. The results reveal varying levels of economic suitability for these powertrain alternatives depending on required driving ranges and duty cycles: the battery electric for regional-haul applications, the hydrogen fuel cell for longer-haul and low-load driving conditions, and the hydrogen combustion engine to meet high power requirements.

View Article and Find Full Text PDF

Fugitive or diffuse methane emissions constitute an important source of damage to the environment, much greater even than CO2 both over a time span of 20 years and over a longer time span of 100. It is therefore of preeminent importance to undertake all the efforts necessary to implement new tools, protocols, and methods that contribute to the identification and measurement of these emissions to implement site-specific actions of mitigation, repair, and conscious management of the emitting plants. Among the remote sensing and leak detection technologies currently used, the tunable diode laser absorption spectroscopy (TDLAS) method plays a relevant role.

View Article and Find Full Text PDF

The CO emission factor is the basis for analyzing vehicle CO emissions. This study establishes a correlation model between the fuel CO emission factor and the mileage-based CO emission factor using fuel consumption data, then analyzes the fuel consumption and CO emission situation of vehicles in Beijing with the established models. The main research conclusions are as follows: The proposed correlation models are effective for analyzing urban vehicle CO emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!