The present work systematically investigates a new strategy for the functionalization of silica gel using alkyl silatrane chemistry instead of alkylsilanes for synthesis of chromatographic stationary phases. In this work, silica was chemically modified for further functionalization by a thiol-ene click reaction. Thus, 3-mercaptopropylsilatrane (MPS) was used which is capable to form self-assembled monolayers (SAM) on top of silanol surfaces in a controlled manner as previously shown for silicon wafers. The utility of this chemistry for stationary phase synthesis in liquid chromatography was not evaluated yet. Hence, silica surface modifications using MPS were studied in comparison to established 3-mercaptopropyltrimethoxysilane (MPTMS) chemistry. First, the employed elemental analysis method was validated and it showed excellent intra-day and inter-day precisions (typically less than 5% RSD). It could be shown that the reaction kinetics of MPS was roughly 35-times faster than with MPTMS. After 30 min reaction time with MPS, the thiol content reached 74% of the maximal coverage. Due to controlled chemistry with MPS, which does not lead to oligomeric siloxane network at the silica surface, the ligand coverage was lower. However, multiple silanization cycles with MPS led to a dense surface coverage (around 4 µmol m). Si cross polarization/magic angle spinning (CP/MAS) solid-state NMR revealed distinct T/T/T ratios for MPS and MPTMS materials with up to 80% T (indicative for trifunctional siloxane linkage) for MPS and around 20% T for MPTMS. This indicates a more homogeneous, thinner monolayer film of MPS on the silica surface, as compared to an irregular thick oligomeric siloxane network with MPTMS. Bonding of quinine carbamate as chiral selector afforded an efficient chiral stationary phase (CSP) for chromatographic enantiomer separation. Separation factors were comparable to MPTMS-bonded CSP, however, chromatographic efficiency was much better for the MPS-bonded CSP. H/u curves indicated a reduced mass transfer resistance by roughly factor 3 for MPS- compared to MPTMS-bonded CSP. This confirms better chromatographic performance of surfaces with homogeneous monolayer compared to network structures on the silica surface which suffer from poor stationary phase mass transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2021.462418DOI Listing

Publication Analysis

Top Keywords

silica surface
16
stationary phase
12
mps
9
functionalization silica
8
liquid chromatography
8
oligomeric siloxane
8
siloxane network
8
csp chromatographic
8
mptms-bonded csp
8
mass transfer
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!