Background: Cervical dystonia (CD) is the most common form of focal dystonia with involuntary movements and postures of the head. The pathogenesis and neural mechanisms underlying CD have not been fully elucidated.
Methods: Twenty-seven newly drug-naïve patients with CD and 21 healthy controls (HCs) were recruited with clinical assessment and resting-state functional magnetic resonance imaging (rs-fMRI) scanning. Severity of CD was measured by Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) and Tsui scores. Whole-brain voxel-wise intrinsic connectivity (IC) and seed-based functional connectivity (FC) analyses were performed for detection of changes in the CD group relative to HCs, controlling for age, gender, and global time series correlation, followed by correlation analyses of IC, seed-based FC and clinically relevant features, respectively.
Results: In comparison with HCs, CD patients showed significantly increased IC measurement in the anterior part of the left supramarginal gyrus and extended to the inferior left postcentral gyrus (AL-SMG/IL-PCG). With this cluster as a seed, decreased FC was found in the right precentral and postcentral gyrus. Moreover, the regional IC value in the AL-SMG/IL-PCG was significantly positively correlated with TWSTRS-1 (severity) score, and significantly negatively correlated with the associated seed-based FC strength.
Conclusions: Our results showed signs of both hyper- and hypo-connectivity in bilateral regions of the sensorimotor network related to CD. The imbalance of functional connectivity (both hyper- and hypo-) may hint both overloading and disrupted somatosensory or sensorimotor integration dysfunction within the sensorimotor network underlying the pathophysiology of CD, thus providing a network target for future therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.parkreldis.2021.07.020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!