An exotic condensation of DNA molecules is observed on the nanostructured ZnO surface. The ZnO nanostructures (NS) fabricated by thermal vapor deposition technique were associated with a large number of oxygen vacancies on the surface. These oxygen vacancies induced changes in the DNA conformation which further reflected through changes in the persistence length of the DNA molecules. This indicates a reinforcement of the bonds and binding in both the phosphate and the base regions of the DNA molecules with the positively charged core vacancy sites on the ZnO nanostructured surface through strong interaction mediated via long-range electrostatic forces which effectively reduced the end-to-end distance of the λ-DNA molecule. This strongly suggests a transition of the λ-DNA molecule through structural modification into a more compact higher-order fractal dimension from its native state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpc.2021.106659 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!