Plant metabolites are dynamically modified and distributed in response to environmental changes. However, it is poorly understood how metabolic change functions in plant stress responses. Maintaining ion homeostasis under salt stress requires coordinated activation of two types of central regulators: plasma membrane (PM) H-ATPase and Na/H antiporter. In this study, we used a bioassay-guided isolation approach to identify endogenous small molecules that affect PM H-ATPase and Na/H antiporter activities and identified phosphatidylinositol (PI), which inhibits PM H-ATPase activity under non-stress conditions in Arabidopsis by directly binding to the C terminus of the PM H-ATPase AHA2. Under salt stress, the phosphatidylinositol 4-phosphate-to-phosphatidylinositol (PI4P-to-PI) ratio increased, and PI4P bound and activated the PM Na/H antiporter. PI prefers binding to the inactive form of PM H-ATPase, while PI4P tends to bind to the active form of the Na/H antiporter. Consistent with this, pis1 mutants, with reduced levels of PI, displayed increased PM H-ATPase activity and salt stress tolerance, while the pi4kβ1 mutant, with reduced levels of PI4P, displayed reduced PM Na/H antiporter activity and salt stress tolerance. Collectively, our results reveal that the dynamic change between PI and PI4P in response to salt stress in Arabidopsis is crucial for maintaining ion homeostasis to protect plants from unfavorable environmental conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molp.2021.07.020 | DOI Listing |
Plant Cell Environ
January 2025
Research Center of Genetic Resources, National Agriculture and Food Research Organization, Ibaraki, Japan.
Vigna marina (Barm.) Merr. is adapted to tropical marine beaches and has an outstanding tolerance to salt stress.
View Article and Find Full Text PDFKidney Int
February 2025
Department of Pediatrics, The Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada. Electronic address:
Sodium reabsorption is tightly coupled to calcium reabsorption in the proximal tubule via the action of the Na/H exchanger isoform 3 (NHE3). Poulsen et al. provide evidence of reduced proximal calcium reabsorption in kidney tubule-specific NHE3-deficient mice that is compensated distally, unaltered phosphate homeostasis, and NHE3 involvement in the hypocalciuric effect of thiazides.
View Article and Find Full Text PDFPlant Cell
January 2025
State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.
View Article and Find Full Text PDFFEBS Lett
December 2024
Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel.
The Homo sapiens Na/H antiporter NHA2 (SLC9B2) transports Na or Li in exchange for protons across cell membranes, and its dysfunction results in various pathologies. The activity of HsNHA2 is specifically inhibited by the flavonoid phloretin. Using bioinformatic modeling, we predicted two amino acids (R177 and S178) as being important for the binding of phloretin to the HsNHA2 molecule.
View Article and Find Full Text PDFNPJ Syst Biol Appl
December 2024
Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, 560012, India.
Dysregulated pH is now recognised as a hallmark of cancer. Recent evidence has revealed that the endosomal pH regulator Na/H exchanger NHE9 is upregulated in colorectal cancer to impose a pseudo-starvation state associated with invasion, highlighting an underexplored mechanistic link between adaptive endosomal reprogramming and malignant transformation. In this study, we use a model that quantitatively captures the dynamics of the core regulatory network governing epithelial mesenchymal plasticity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!