Nuclear receptors in liver fibrosis.

Biochim Biophys Acta Mol Basis Dis

Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria; Vienna Experimental Hepatic Hemodynamic Lab (HEPEX), Medical University of Vienna, Vienna, Austria; Christian Doppler Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria. Electronic address:

Published: December 2021

Nuclear receptors are ligand-activated transcription factors that regulate gene expression of a variety of key molecular signals involved in liver fibrosis. The primary cellular driver of liver fibrogenesis is activated hepatic stellate cells. Different nuclear receptors regulate the hepatic expression of pro-inflammatory and pro-fibrogenic cytokines that promote the transformation of hepatic stellate cells into fibrogenic myofibroblasts. Importantly, nuclear receptors regulate gene expression circuits that promote hepatic fibrogenesis and/or allow liver fibrosis regression. In this review, we highlight the direct and indirect influence of nuclear receptors on liver fibrosis, with a focus on hepatic stellate cells, and discuss potential therapeutic effects of nuclear receptor modulation in regard to anti-fibrotic and anti-inflammatory effects. Further research on nuclear receptors-related signaling may lead to the clinical development of effective anti-fibrotic therapies for patients with liver disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2021.166235DOI Listing

Publication Analysis

Top Keywords

nuclear receptors
20
liver fibrosis
16
hepatic stellate
12
stellate cells
12
receptors liver
8
regulate gene
8
gene expression
8
receptors regulate
8
effects nuclear
8
nuclear
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!