Detection of selection signatures in the genome of a farmed population of anadromous rainbow trout (Oncorhynchus mykiss).

Genomics

Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Avenida Santa Rosa 11735, La Pintana, 8820808 Santiago, Chile; Núcleo Milenio de Salmónidos Invasores (INVASAL), Concepción, Chile. Electronic address:

Published: September 2021

Domestication processes and artificial selection are likely to leave signatures that can be detected at a molecular level in farmed rainbow trout (Oncorhynchus mykiss). These signatures of selection are genomic regions that contain functional genetic variants conferring a higher fitness to their bearers. We genotyped 749 rainbow trout from a commercial population using a rainbow trout Axiom 57 K SNP array panel and identified putative genomic regions under selection using the pcadapt, Composite Likelihood Ratio (CLR) and Integrated Haplotype Score (iHS) methods. After applying quality-control pipelines and statistical analyses, we detected 12, 96 and 16 SNPs putatively under selection, associated with 96, 781 and 115 candidate genes, respectively. Several of these candidate genes were associated with growth, early development, reproduction, behavior and immune system traits. In addition, some of the SNPs were found in interesting regions located in autosomal inversions on Omy05 and Omy20. These findings could represent a genome-wide map of selection signatures in farmed rainbow trout and could be important in explaining domestication and selection for genetic traits of commercial interest.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2021.07.027DOI Listing

Publication Analysis

Top Keywords

rainbow trout
20
selection signatures
8
trout oncorhynchus
8
oncorhynchus mykiss
8
farmed rainbow
8
genomic regions
8
candidate genes
8
selection
6
rainbow
5
trout
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!