Targeted delivery of cytotoxic drugs has shown great potential in cancer therapy. In this light, vitamin D3 (vit.D3)-coated micelles were fabricated to encapsulate the cytotoxic drug; etoposide (ETP). Sodium caseinate micelles were first utilized to encapsulate vit.D3 and ETP within their hydrophobic core, then drug-loaded micelles were further decorated with an envelope of vit.D3/ phospholipid complex to enhance the active targeting potency of fabricated micelles via exploiting vit.D3 receptors (VDRs) overexpressed on the outer surface of breast cancer cells. In vitro cytotoxicity studies showed that fabricated micelles exhibited improved anticancer effect on MDA MB-231 and MCF-7 human breast cancer cell lines in comparison to free vit.D3 + ETP without any significant toxicity on normal human lung fibroblast (Wi-38) cells. In vivo biodistribution and efficacy studies in Ehrlich ascites tumor animal model revealed that fabricated micelles manifested improved accumulation in tumor tissue due to active targeting potential of vit.D3 without any remarkable toxicity. More importantly, fabricated micelles resulted in enhanced tumor apoptosis, reduced angiogenesis, invasion and autophagy, besides a decline in the tumor expression levels of both miR-21 and miR-192. Therefore, vit.D3/ETP micelles could serve as a favorable actively targeted anticancer delivery system having a superior effect over the free combination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijpharm.2021.120965 | DOI Listing |
Adv Sci (Weinh)
January 2025
Dermatology Hospital, Southern Medical University, Guangzhou, 510091, China.
Sigal peptides have garnered remarkable efficacy in rejuvenating photoaged skin and delaying senescence. Nevertheless, their low solubility and poor permeability bring about a formidable challenge in their transdermal delivery. To address this challenge, bioactive ionic liquids (ILs) synthesized from natural glycyrrhizic acid (GA) and oxymatrine (OMT) with eminent biocompatibility is first prepared.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Pharmaceutics, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, 280 East Waihuan Road, Guangzhou 510006, China.
Indomethacin (IDM) is commonly used to treat chronic inflammatory diseases such as rheumatoid arthritis and osteoarthritis. However, long-term oral IDM treatment can harm the gastrointestinal tract. This study presents a design for encapsulating IDM within mixed micelles (MMs)-loaded dissolving microneedles (DMNs) to improve and sustain transdermal drug delivery.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, India.
Zein, a plant-based protein obtained from the endosperm of corn ( L.) received colossal attention in recent years due to its promising features like being economical, mucoadhesive, gastro-resistant, biocompatible and aids to load hydrophilic and hydrophobic therapeutic agents. It can be employed for the fabrication of various drug delivery systems such as nanoparticles, micelles, hydrogels, nanofibers and films.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, National Institute of Technology, Rourkela, Odisha 769008, India.
Bile salts (BS) are naturally occurring steroidal biosurfactants. The ease of functionalization of BSs has boosted their use as inexpensive building blocks for the fabrication of a broad set of value-added soft functional materials. In the present work, three fluorescent bile acid (FBA) derivatives have been synthesized by conjugating anthracene at the side chain of lithocholic acid, deoxycholic acid, and cholic acid to understand the effect of the nature of the steroid nucleus on their physicochemical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!