The DNA-binding protein CST associates with the cohesin complex and promotes chromosome cohesion.

J Biol Chem

Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, USA. Electronic address:

Published: September 2021

Sister chromatid cohesion (SCC), the pairing of sister chromatids after DNA replication until mitosis, is established by loading of the cohesin complex on newly replicated chromatids. Cohesin must then be maintained until mitosis to prevent segregation defects and aneuploidy. However, how SCC is established and maintained until mitosis remains incompletely understood, and emerging evidence suggests that replication stress may lead to premature SCC loss. Here, we report that the ssDNA-binding protein CTC1-STN1-TEN1 (CST) aids in SCC. CST primarily functions in telomere length regulation but also has known roles in replication restart and DNA repair. After depletion of CST subunits, we observed an increase in the complete loss of SCC. In addition, we determined that CST associates with the cohesin complex. Unexpectedly, we did not find evidence of altered cohesin loading or mitotic progression in the absence of CST; however, we did find that treatment with various replication inhibitors increased the association between CST and cohesin. Because replication stress was recently shown to induce SCC loss, we hypothesized that CST may be required to maintain or remodel SCC after DNA replication fork stalling. In agreement with this idea, SCC loss was greatly increased in CST-depleted cells after exogenous replication stress. Based on our findings, we propose that CST aids in the maintenance of SCC at stalled replication forks to prevent premature cohesion loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390553PMC
http://dx.doi.org/10.1016/j.jbc.2021.101026DOI Listing

Publication Analysis

Top Keywords

cohesin complex
12
replication stress
12
scc loss
12
cst
9
scc
9
cst associates
8
associates cohesin
8
replication
8
dna replication
8
maintained mitosis
8

Similar Publications

Structural maintenance of chromosome-1A (SMC1A) is overexpressed in various malignancies including triple-negative breast cancer (TNBC). As a core component of the cohesin complex, SMC1A was initially recognized for its involvement in chromosomal cohesion and DNA-repair pathways. However, recent studies have unveiled its pivotal role in epithelial-mesenchymal transition (EMT), metastasis, and chemo- and radio-resistance in cancer cells.

View Article and Find Full Text PDF

ANKRD11 binding to cohesin suggests a connection between KBG syndrome and Cornelia de Lange syndrome.

Proc Natl Acad Sci U S A

January 2025

Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Department of Neuroscience, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.

Ankyrin Repeat Domain-containing Protein 11 () is a causative gene for KBG syndrome, a significant risk factor for Cornelia de Lange syndrome (CdLS), and a highly confident autism spectrum disorder gene. Mutations of lead to developmental abnormalities in multiple organs/tissues including the brain, craniofacial and skeletal bones, and tooth structures with unknown mechanism(s). Here, we find that ANKRD11, via a short peptide fragment in its N-terminal region, binds to the cohesin complex with a high affinity, implicating why mutation can cause CdLS.

View Article and Find Full Text PDF

A dual role of Cohesin in DNA DSB repair.

Nat Commun

January 2025

Department of Hematopoietic Biology & Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Cells undergo tens of thousands of DNA-damaging events each day. Defects in repairing double-stranded breaks (DSBs) can lead to genomic instability, contributing to cancer, genetic disorders, immunological diseases, and developmental defects. Cohesin, a multi-subunit protein complex, plays a crucial role in both chromosome organization and DNA repair by creating architectural loops through chromatin extrusion.

View Article and Find Full Text PDF

Genome folding by cohesion.

Curr Opin Genet Dev

January 2025

School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; New Cornerstone Science Laboratory, Westlake University, Hangzhou, Zhejiang, China. Electronic address:

Chromosomes in eukaryotic cells undergo compaction at multiple levels and are folded into hierarchical structures to fit into the nucleus with limited dimensions. Three-dimensional genome organization needs to be coordinated with chromosome-templated processes, including DNA replication and gene transcription. As an ATPase molecular machine, the cohesin complex is a major driver of genome folding, which regulates transcription by modulating promoter-enhancer contacts.

View Article and Find Full Text PDF

SMC motor proteins extrude DNA asymmetrically and can switch directions.

Cell

January 2025

Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands. Electronic address:

Structural maintenance of chromosomes (SMC) complexes organize the genome via DNA loop extrusion. Although some SMCs were reported to do so symmetrically, reeling DNA from both sides into the extruded DNA loop simultaneously, others perform loop extrusion asymmetrically toward one direction only. The mechanism underlying this variability remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!