Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are part of the incretin system that regulates glucose homeostasis. A series of GIPR residues putatively important for ligand binding and receptor activation were mutated and pharmacologically evaluated using GIPR selective agonists in cAMP accumulation, ERK1/2 phosphorylation (pERK1/2) and β-arrestin 2 recruitment assays. The impact of mutation on ligand efficacy was determined by operational modelling of experimental data for each mutant, with results mapped onto the full-length, active-state GIPR structure. Two interaction networks, comprising transmembrane helix (TM) 7, TM1 and TM2, and extracellular loop (ECL) 2, TM5 and ECL3 were revealed, respectively. Both networks were critical for Gα-mediated cAMP accumulation and the recruitment of β-arrestin 2, however, cAMP response was more sensitive to alanine substitution, with most mutated residues displaying reduced signaling. Unlike the other two assays, activation of ERK1/2 was largely independent of the network involving ECL2, TM5 and ECL3, indicating that pERK1/2 is at least partially distinct from Gα or β-arrestin pathways and this network is also crucial for potential biased agonism at GIPR. Collectively, our work advances understanding of the structure-function relationship of GIPR and provides a framework for the design and/or interpretation of GIP analogues with unique signaling profiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2021.114715 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!