To evaluate the simultaneous nitrification and denitrification (SND) performance of the aeration solid-phase denitrification (SPD) process and improve the operating efficiency, aeration SPD process using polybutanediol succinate as carbon source was optimized and the process was bioaugmented with heterotrophic nitrification-aerobic denitrification bacteria for the treatment of real wastewater. The results showed that after bioaugmentation, the total nitrogen removal efficiency of the aeration SPD process increased by 50.46 % under condition of dissolved oxygen (DO) 3 mg/L. According to Illumina MiSeq sequencing and correlation analyses, the microbial community can perform SND under the conditions of DO 5 mg and HRT 6 h, but is susceptible to DO. Bioaugmentation mainly affected the carbon source metabolic network with heterotrophic bacteria Methyloversatilis, Thiothrix, and norank_Lentimicrobiaceae as nodes to change the community structure, thereby improving the performance of the functional microbial community. Kyoto Encyclopedia of Genes and Genomes analysis suggested that narB, narG, narH, nirK and narI were the key genes involved in the response to bioaugmentation. This work provides new insights for the application of the SPD process in wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.111786DOI Listing

Publication Analysis

Top Keywords

spd process
16
aeration solid-phase
8
solid-phase denitrification
8
process bioaugmented
8
bacteria treatment
8
efficiency aeration
8
aeration spd
8
carbon source
8
microbial community
8
process
6

Similar Publications

Water quality plays a critical role in health care, particularly in the processing of medical devices. This article highlights the infection control risks associated with water sources and the regulatory requirements for water management plans in health care facilities. The guidance on water quality has evolved from the initial technical information report provided by the Association for the Advancement of Medical Instrumentation in 2014 to the more recent 2023 publication of the American National Standards Institute and Association for the Advancement of Medical Instrumentation standard for water used in medical device processing.

View Article and Find Full Text PDF

The expression of CD38 by cancer cells may mediate an immune-suppressive effect by producing Extracellular Adenosine (ADO) acting through G-protein-coupled cell surface receptors on cellular components and tumor cells. This can increase PD-1 expression and interaction with PD-L1, suppressing CD8 + cytotoxic T cells. This study examines the impact of heightened CD38 expression and extracellular ADO on various hematological and clinical parameters in patients with mature B-cell lymphoma, alongside their correlation with the soluble counterparts of the PD-1/PD-L1 axis.

View Article and Find Full Text PDF

The widespread existence of sulfapyridine (SPD, a typical representative of sulfonamide) in natural environment has raised increasing interest because its potential to cause antibiotic-resistant genes. In this work, the degradation of SPD during heat-activated peroxodisulfate (heat/PDS) oxidation process was explored. The pseudo-first-order rate constant () of SPD was 0.

View Article and Find Full Text PDF

Background: Polyamines, including spermidine (SPD), spermine (SPM) and putrescine (PUT), are essential for cellular physiology and various cellular processes. This study aimed to examine the associations of dietary polyamines intake and all-cause mortality and incident cardiovascular disease (CVD).

Methods: This prospective cohort study included 184,732 participants without CVD at baseline from the UK Biobank who had completed at least one dietary questionnaire.

View Article and Find Full Text PDF

Dislocation Density in Ceramics Processed by Severe Plastic Deformation via High-Pressure Torsion.

Materials (Basel)

December 2024

Laboratory of Metals and Alloys Under Extreme Impacts, Ufa University of Science and Technology, 32 Zaki Validi str., Ufa 450076, Russia.

This study investigates the dislocation density in ceramics processed by severe plastic deformation at room and elevated temperatures via high-pressure torsion (HPT) for various numbers of turns and shear strains. Ceramics, characterized by ionic or covalent bonding, typically exhibit brittleness due to limited dislocation activity. However, HPT enables significant microstructural transformations in ceramics including dislocation nucleation and accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!