Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dual-ion batteries (DIBs) offer a great alternative to state-of-the-art lithium-ion batteries, based on their high promises due to the absence of transition metals and the use of low-cost materials, which could make them economically favorable targeting stationary energy storage applications. In addition, they are not limited by certain metal cations, and DIBs with a broad variety of utilized ions could be demonstrated over the last years. Herein, a systematic study of different electrolyte approaches for Mg-ion-based DIBs was conducted. A side-by-side comparison of Li- and Mg-ion-based electrolytes using activated carbon as negative electrode revealed the opportunities but also limitations of Mg-ion-based DIBs. Ethylene sulfite was successfully introduced as electrolyte additive and increased the specific discharge capacity significantly up to 93±2 mAh g with coulombic efficiencies over 99 % and an excellent capacity retention of 88 % after 400 cycles. In addition, and for the first time, highly concentrated carbonate-based electrolytes were employed for Mg-ion-based DIBs, showing adequate discharge capacities and high coulombic efficiencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8596887 | PMC |
http://dx.doi.org/10.1002/cssc.202101227 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!