Recent reclassification of the Klebsiella genus to include Klebsiella variicola, and its association with bacteremia and mortality, has raised concerns. We examined Klebsiella spp. infections among battlefield trauma patients, including occurrence of invasive K. variicola disease. Klebsiella isolates collected from 51 wounded military personnel (2009-2014) through the Trauma Infectious Disease Outcomes Study were examined using polymerase chain reaction (PCR) and pulsed-field gel electrophoresis. K. variicola isolates were evaluated for hypermucoviscosity phenotype by the string test. Patients were severely injured, largely from blast injuries, and all received antibiotics prior to Klebsiella isolation. Multidrug-resistant Klebsiella isolates were identified in 23 (45%) patients; however, there were no significant differences when patients with and without multidrug-resistant Klebsiella were compared. A total of 237 isolates initially identified as K. pneumoniae were analyzed, with 141 clinical isolates associated with infections (remaining were colonizing isolates collected through surveillance groin swabs). Using PCR sequencing, 221 (93%) isolates were confirmed as K. pneumoniae, 10 (4%) were K. variicola, and 6 (3%) were K. quasipneumoniae. Five K. variicola isolates were associated with infections. Compared to K. pneumoniae, infecting K. variicola isolates were more likely to be from blood (4/5 versus 24/134, p = 0.04), and less likely to be multidrug-resistant (0/5 versus 99/134, p<0.01). No K. variicola isolates demonstrated the hypermucoviscosity phenotype. Although K. variicola isolates were frequently isolated from bloodstream infections, they were less likely to be multidrug-resistant. Further work is needed to facilitate diagnosis of K. variicola and clarify its clinical significance in larger prospective studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328492 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255636 | PLOS |
ACS Synth Biol
December 2024
Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States.
The soil environment affected by plant roots and their exudates, termed the rhizosphere, significantly impacts crop health and is an attractive target for engineering desirable agricultural traits. Engineering microbes in the rhizosphere is one approach to improving crop yields that directly minimizes the number of genetic modifications made to plants. Soil microbes have the potential to assist with nutrient acquisition, heat tolerance, and drought response if they can persist in the rhizosphere in the correct numbers.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, Mexico.
Recently, global dissemination of NDM-producing in hospital settings and natural environments has been described. This study described the whole-genome sequencing of multidrug-resistant phenotype and NDM-producing clinical isolates.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2025
Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
BMC Microbiol
November 2024
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, National Medical Center for Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, China.
mSphere
December 2024
Univ de Caen Normandie, Univ Rouen Normandie, INSERM, DYNAMICURE, Caen, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!