To enhance the efficiency and stability of the organic-inorganic hybrid perovskite (OIHP) solar cells, doping has been demonstrated as a straightforward method. Nevertheless, the perception of trap states regulated by doping and their effects on the performance of solar cells is not in-depth. Herein, typical OIHPs (CH NH PbI and Cs FA MA Pb(I Br ) ) doped with RbI are employed to expound the doping mechanism in affecting the efficiency of devices. Systematic spectroscopic characterizations indicate that doping significantly influences the photocarrier dynamics via directly regulating the trap states. The results indicate that doping would reduce the trap density by passivating defects and induce extra trapping centers. This directly manipulates the transient transport of the photocarriers and finally influences the output of devices. The optimization of solar cell performance requires the tradeoff of competitive relation between the passivation and introduction of trapping centers. The results provide the spectroscopic perception on how doping concentration affects trap density, carrier dynamics, transport behavior, and ultimately the parameters of devices. It provides a straightforward guidance to the design and optimization of OIHP-based solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202102241DOI Listing

Publication Analysis

Top Keywords

solar cells
16
trap states
12
spectroscopic perception
8
perception trap
8
indicate doping
8
trap density
8
trapping centers
8
doping
6
trap
5
solar
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!