Chlorpyrifos (CPF), an insecticide, induces pro-oxidant, pro-inflammatory, and pro-apoptotic effects in animal cells. Contamination with CPF occurs not only in farms, since CPF is found in the food consumed in homes. Recently, it was demonstrated that CPF affects the mitochondria, inhibiting components of the electron transfer chain (ETC), causing loss of mitochondrial membrane potential (MMP), and reducing the synthesis of adenosine triphosphate (ATP) by the Complex V. Pinocembrin (PB) is found in propolis and exhibits antioxidant, anti-inflammatory, and anti-apoptotic effects in mammalian cells. PB is a potent inducer of the nuclear factor erythroid 2-related factor 2 (Nrf2), which is a major transcription factor controlling the expression of heme oxygease-1 (HO-1), among others. In the present work, we investigated whether PB would be able to prevent the mitochondrial and immune dysfunctions in the human neuroblastoma SH-SY5Y cells exposed to CPF. PB was tested at 1-25 µM for 4 h before the administration of CPF at 100 µM for additional 24 h. We found that PB prevented the CPF-induced inhibition of ETC, loss of MMP, and decline in the ATP synthesis. PB also promoted anti-inflammatory actions in this experimental model. Silencing of Nrf2 or inhibition of HO-1 suppressed the PB-induced effects in the CPF-challenged cells. Thus, PB promoted beneficial effects by a mechanism dependent on the Nrf2/HO-1/CO + BR axis in the CPF-treated cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11011-021-00803-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!