Malnutrition is highly prevalent in older persons with dementia. Therefore, strong predictors of malnutrition in this population are crucial to initiating early interventions. This study evaluates the association between the probability of having malnutrition with the muscle volume and intramuscular fat (iMAT) of the masseter and the tongue in magnetic resonance imaging (MRI) of community-dwelling older persons diagnosed with mild dementia followed up for 5 years. This is a longitudinal study conducted in the western part of Norway. Muscle volume and iMAT of the tongue and masseter were computed from structural head MRI obtained from 65 participants of the Dementia Study of Western Norway using Slice-O-Matic software for segmentation. Malnutrition was assessed using the Global Leadership Initiative on Malnutrition Index. Linear mixed models were conducted. Having malnutrition at baseline was associated with lower muscle volume (odds ratio [OR] 0.60, standard error [SE] 0.20; p = .010) and higher iMAT (OR 3.31, SE 0.46; p = .010) in the tongue. At 5 years follow-up, those with lower muscle volume (OR 0.55, SE 0.20; p = .002) and higher iMAT (OR 2.52, SE 0.40; p = .022) in the tongue had a higher probability of presenting malnutrition. The masseter iMAT and volume were not associated with malnutrition in any of the adjusted models. In people diagnosed with mild dementia, tongue muscle volume and iMAT were associated with baseline malnutrition and the probability of developing malnutrition in a 5-year trajectory. In the masseter, there were no significant associations after adjustments.

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glab224DOI Listing

Publication Analysis

Top Keywords

muscle volume
24
malnutrition
11
volume intramuscular
8
intramuscular fat
8
older persons
8
diagnosed mild
8
mild dementia
8
western norway
8
volume imat
8
lower muscle
8

Similar Publications

Large Variations in Phenylalanine Concentrations Associate Adverse Cardiac Remodelling in Adult Patients With Phenylketonuria-A Long-Term CMR Study.

J Cachexia Sarcopenia Muscle

February 2025

Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany.

Background: Despite a phenylalanine (Phe) restrictive diet, most adult patients with 'classical' phenylketonuria (PKU) maintain life-long Phe concentrations above the normal range and receive tyrosine (Tyr) and protein-enriched diets to maintain acceptable concentrations and ensure normal development. While these interventions are highly successful in preventing adverse neuropsychiatric complications, their long- term consequences are incompletely explored. We observed early cardiomyopathic characteristics and associated hemodynamic changes in adult PKU patients and present here the results of a longitudinal evaluation of cardiac phenotype.

View Article and Find Full Text PDF

Visualizing lipid nanoparticle trafficking for mRNA vaccine delivery in non-human primates.

Mol Ther

January 2025

Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge, MA, USA, 02139; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; Cambridge, MA, USA, 02139; Howard Hughes Medical Institute; Chevy Chase, MD, USA, 20815; Department of Materials Science of Engineering; Massachusetts Institute of Technology; Cambridge, MA, USA, 02139. Electronic address:

mRNA delivered using lipid nanoparticles (LNPs) has become an important subunit vaccine modality, but mechanisms of action for mRNA vaccines remain incompletely understood. Here, we synthesized a metal chelator-lipid conjugate enabling positron emission tomography (PET) tracer labeling of LNP/mRNA vaccines for quantitative visualization of vaccine trafficking in live mice and non-human primates (NHPs). Following i.

View Article and Find Full Text PDF

Maximal Intensity Exercise Induces Adipokine Secretion and Disrupts Prooxidant-Antioxidant Balance in Young Men with Different Body Composition.

Int J Mol Sci

January 2025

Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland.

Maximal physical effort induces a disturbance in the body's energy homeostasis and causes oxidative stress. The aim of the study was to determine whether prooxidant-antioxidant balance disturbances and the secretion of adipokines regulating metabolism, induced by maximal intensity exercise, are dependent on body composition in young, healthy, non-obese individuals. We determined changes in the concentration of advanced protein oxidation products (AOPP), markers of oxidative damage to nucleic acids (DNA/RNA/ox), and lipid peroxidation (LPO); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity, as well as concentrations of visfatin, leptin, resistin, adiponectin, asprosin, and irisin in the blood before and after maximal intensity exercise in men with above-average muscle mass (NFAT-HLBM), above-average fat mass (HFAT-NLBM), and with average body composition (NFAT-NLBM).

View Article and Find Full Text PDF

Background: Double cycling with breath-stacking (DC/BS) during controlled mechanical ventilation is considered potentially injurious, reflecting a high respiratory drive. During partial ventilatory support, its occurrence might be attributable to physiological variability of breathing patterns, reflecting the response of the mode without carrying specific risks.

Methods: This secondary analysis of a crossover study evaluated DC/BS events in hypoxemic patients resuming spontaneous breathing in cross-over under neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV +), and pressure support ventilation (PSV).

View Article and Find Full Text PDF

Background: To propose the bladder mucosal smoothness (BMS) grade and validate a predictive model including MRI parameters preoperatively that can evaluate the early recovery of urinary continence (UC) after laparoscopic radical prostatectomy (LRP).

Methods: A retrospective analysis was conducted on 203 patients (83 patients experienced UI at the three-month follow-up) who underwent LRP in our medical center and were diagnosed with prostate cancer (PCa) from June 2016 to March 2020. Patients' clinicopathological data were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!