Angiotensin II-induced natriuresis is attenuated in knockout mice lacking the receptors for tumor necrosis factor-α.

Physiol Rep

Department of Physiology, Tulane Hypertension & Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA, USA.

Published: August 2021

Intravenous infusion of relatively higher doses of angiotensin II (AngII) elicits natriuresis as opposed to its usual anti-natruretic response. As AngII can induce tumor necrosis factor-α (TNFα) production which elicits natriuresis via its action on TNFα receptor type 1 (TNFR1), we hypothesize that the concomitant release of TNFα contributes to the natriuretic response to AngII. Responses to AngII infusion (1 ng min  g for 75 min, iv) were evaluated in anesthetized knockout (KO) mice lacking TNFR1 (n = 6) and TNFR2 (TNFα receptor type 2; n = 6) and compared these responses with those in wild type (WT; n = 6) mice. Arterial pressure (AP) was recorded from a cannula placed in the carotid artery. Renal blood flow (RBF) and glomerular filtration rate (GFR) were measured by PAH and inulin clearances, respectively. Urine was collected from a catheter placed in the bladder. AngII caused similar increases (p < 0.05 vs basal values) in AP (WT, 37 ± 5%; TNFR1KO, 35 ± 4%; TNFR2KO, 30 ± 4%) and decreases (p < 0.05) in RBF (WT, -39 ± 5%; TNFR1KO, -28 ± 6%; TNFR2KO, -31 ± 4%) without significant changes in GFR (WT, -17 ± 7%; TNFR1KO, -18 ± 7%; TNFR2KO, -12 ± 7%). However, despite similar changes in AP and renal hemodynamics, AngII induced increases (p < 0.05) in urinary sodium excretion in WT (3916 ± 942%) were less in the KO strains, more or less in TNFR1KO (473 ± 170%) than in TNFR2KO (1176 ± 168%). These data indicate that TNF-α receptors, particularly TNFR1 are involved in the natriuretic response that occur during acute infusion of AngII and thus, plays a protective role in preventing excessive salt retention at clinical conditions associated with elevated AngII level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326895PMC
http://dx.doi.org/10.14814/phy2.14942DOI Listing

Publication Analysis

Top Keywords

knockout mice
8
mice lacking
8
tumor necrosis
8
necrosis factor-α
8
elicits natriuresis
8
response angii
8
tnfα receptor
8
receptor type
8
type n = 6
8
angii
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!