Successfully employing small interfering RNA (siRNA) therapeutics requires the use of nanotechnology for efficient intracellular delivery. Lipid nanoparticles (LNPs) have enabled the approval of various nucleic acid therapeutics. A major advantage of LNPs is the interchangeability of its building blocks and RNA payload, which allow it to be a highly modular system. In addition, drug derivatization approaches can be used to synthesize lipophilic small molecule prodrugs that stably incorporate in LNPs. This provides ample opportunities to develop combination therapies by co-encapsulating multiple therapeutic agents in a single formulation. Here, it is described how the modular LNP platform is applied for combined gene silencing and chemotherapy to induce additive anticancer effects. It is shown that various lipophilic taxane prodrug derivatives and siRNA against the androgen receptor, a prostate cancer driver, can be efficiently and stably co-encapsulated in LNPs without compromising physicochemical properties or gene-silencing ability. Moreover, it is demonstrated that the combination therapy induces additive therapeutic effects in vitro. Using a double-radiolabeling approach, the pharmacokinetic properties and biodistribution of LNPs and prodrugs following systemic administration in tumor-bearing mice are quantitatively determined. These results indicate that co-encapsulating siRNA and lipophilic prodrugs into LNPs is an attractive and straightforward plug-and-play approach for combination therapy development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202103025 | DOI Listing |
Nucleic Acids Res
December 2024
Alnylam Pharmaceuticals; Cambridge, MA 002142, USA.
RNA interference is a natural antiviral mechanism that could be harnessed to combat SARS-CoV-2 infection by targeting and destroying the viral RNA. We identified potent lipophilic small interfering RNA (siRNA) conjugates targeting highly conserved regions of SARS-CoV-2 outside of the spike-encoding region capable of achieving ≥3-log viral reduction. Serial passaging studies demonstrated that a two-siRNA combination prevented development of resistance compared to a single siRNA approach.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2024
Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
Exosomes are small extracellular vesicles (EVs) constituting fully biological, cell-derived nanovesicles with great potential in cell-to-cell communication and drug delivery applications. The current gold standard for EV labeling and tracking is represented by fluorescent lipophilic dyes which, however, importantly lack selectivity, due to their unconditional affinity for lipids. Herein, an alternative EV fluorescent labeling approach is in-depth evaluated, by taking advantage of green fluorescent protein (GFP) farnesylation (GFP-f), a post-translational modification to directly anchor GFP to the EV membrane.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Pharmacy, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.
Cationic polymers are known to efficiently deliver nucleic acids to target cells by encapsulating the cargo into nanoparticles. However, the molecular organization of these nanoparticles is often not fully explored. Yet, this information is crucial to understand complex particle systems and the role influencing factors play at later stages of drug development.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
Treatment of glioblastoma (GBM) remains challenging due to the presence of blood-brain barrier (BBB) and tumor heterogeneity. Herein, Au nanosheets (AuNSs) functionalized with RGD peptides and small interfering RNA (siRNA), referred to as AuNSs-RGD-C≡C-siRNA (ARCR), are prepared to achieve multimodal therapy for GBM. The AuNSs with a large modifiable surface area, intriguing photothermal conversion efficiency (50.
View Article and Find Full Text PDFmBio
October 2024
School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!