We propose Directionally Paired Principal Component Analysis (DP-PCA), a novel linear dimension-reduction model for estimating coupled yet partially observable variable sets. Unlike partial least squares methods (e.g., partial least squares regression and canonical correlation analysis) that maximize correlation/covariance between the two datasets, our DP-PCA directly minimizes, either conditionally or unconditionally, the reconstruction and prediction errors for the observable and unobservable part, respectively. We demonstrate the optimality of the proposed DP-PCA approach, we compare and evaluate relevant linear cross-decomposition methods with data reconstruction and prediction experiments on synthetic Gaussian data, multi-target regression datasets, and a single-channel image dataset. Results show that when only a single pair of bases is allowed, the conditional DP-PCA achieves the lowest reconstruction error on the observable part and the total variable sets as a whole; meanwhile, the unconditional DP-PCA reaches the lowest prediction errors on the unobservable part. When an extra budget is allowed for the observable part's PCA basis, one can reach an optimal solution using a combined method: standard PCA for the observable part and unconditional DP-PCA for the unobservable part.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323711 | PMC |
http://dx.doi.org/10.1109/icpr48806.2021.9412245 | DOI Listing |
Am J Biol Anthropol
January 2025
Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA.
Objectives: Certain group-living mammals-including many primates-exhibit affiliative relationships between sexes that persist past copulation. Relationships between females and males in baboons (Papio sp.) are particularly well-characterized.
View Article and Find Full Text PDFLarge serine integrases (LSIs) catalyze unidirectional site-specific DNA recombination reactions, yet those reactions are reversed by the presence of a cognate recombination directionality factor (RDF). Mechanistic understanding of directionality control has been hampered by a lack of structural information. Here, we use cryo-electron microscopy (cryo-EM) to determine the structures of six SPbeta integrase-DNA complexes along the integrative (-RDF) and excisive (+RDF) reaction pathways, at 4.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA.
RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ∼20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes.
View Article and Find Full Text PDFProteins
December 2024
Earth-Life Science Institute, Institute of Science Tokyo, Tokyo, Japan.
Curr Biol
January 2025
Deptartment of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA. Electronic address:
Motion perception is crucial to animal survival and effective environmental interactions. In mammals, detection of movement begins in the retina. Directionally selective (DS) retinal ganglion cells were first discovered in the rabbit eye, and they have since been found in mouse, cat, and monkey.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!