Whole-genome sequencing (WGS) and whole-exome sequencing studies have become increasingly available and are being used to identify rare genetic variants associated with health and disease outcomes. Investigators routinely use mixed models to account for genetic relatedness or other clustering variables (e.g., family or household) when testing genetic associations. However, no existing tests of the association of a rare variant with a binary outcome in the presence of correlated data control the type 1 error where there are (1) few individuals harboring the rare allele, (2) a small proportion of cases relative to controls, and (3) covariates to adjust for. Here, we address all three issues in developing a framework for testing rare variant association with a binary trait in individuals harboring at least one risk allele. In this framework, we estimate outcome probabilities under the null hypothesis and then use them, within the individuals with at least one risk allele, to test variant associations. We extend the BinomiRare test, which was previously proposed for independent observations, and develop the Conway-Maxwell-Poisson (CMP) test and study their properties in simulations. We show that the BinomiRare test always controls the type 1 error, while the CMP test sometimes does not. We then use the BinomiRare test to test the association of rare genetic variants in target genes with small-vessel disease (SVD) stroke, short sleep, and venous thromboembolism (VTE), in whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8321319 | PMC |
http://dx.doi.org/10.1016/j.xhgg.2021.100040 | DOI Listing |
JAMA
January 2025
CRIMM, Center Research and Innovation of Myeloproliferative Neoplasms, University of Florence, AOU Careggi, Florence, Italy.
Importance: Essential thrombocythemia, a clonal myeloproliferative neoplasm with excessive platelet production, is associated with an increased risk of thrombosis and bleeding. The annual incidence rate of essential thrombocythemia in the US is 1.5/100 000 persons.
View Article and Find Full Text PDFJA Clin Rep
January 2025
Department of Anesthesiology and Critical Care Medicine, Hokkaido University Hospital, N14W5, Kita-ku, Sapporo, 060-8648, Japan.
Background: Plasma exchange (PE) removes high-molecular-weight substances and is sometimes used for antineutrophil cytoplasmic antibody-associated vasculitis (AAV) with alveolar hemorrhage. Hypotension during PE is rare, except in allergic cases. We report a case of shock likely caused by increased pulmonary vascular resistance (PVR) during PE.
View Article and Find Full Text PDFPediatr Nephrol
January 2025
Department of Pediatric Nephrology, Istanbul University- Cerrahpasa, Cerrahpasa Faculty of Medicine, 34098, Istanbul, Turkey.
Autosomal recessive proximal renal tubular acidosis (AR-pRTA) with ocular abnormalities is a rare syndrome caused by variants in the SLC4A4 gene, which encodes Na/HCO3 cotransporter (NBCe1). The syndrome primarily affects the kidneys, but also causes extra-renal manifestations. Pancreatic type NBCe1 is located at the basolateral membrane of the pancreatic ductal cells and together with CFTR chloride channel, it is involved in bicarbonate secretion.
View Article and Find Full Text PDFPediatr Nephrol
January 2025
Department of Paediatric Nephrology, Christian Medical College, Vellore, India.
Renovascular hypertension is the second leading cause of hypertension. Twenty-seven genes have been attributed to monogenic renovascular hypertension at present. We present a 15-year-old boy with facial dysmorphism, thick skin and renovascular hypertension with a novel gain-of-function variant in SMAD4 gene suggesting Myhre syndrome.
View Article and Find Full Text PDFHum Genet
January 2025
TCS Research, Tata Consultancy Services, Hyderabad, India.
Variants of uncertain significance (VUS) represent variants that lack sufficient evidence to be confidently associated with a disease, thus posing a challenge in the interpretation of genetic testing results. Here we report an improved method for predicting the VUS of Arylsulfatase A (ARSA) gene as part of the Critical Assessment of Genome Interpretation challenge (CAGI6). Our method uses a transfer learning approach that leverages a pre-trained protein language model to predict the impact of mutations on the activity of the ARSA enzyme, whose deficiency is known to cause a rare genetic disorder, metachromatic leukodystrophy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!