Finite element models of the intervertebral disc are used to address research questions that cannot be tested through typical experimentation. A disc model requires complex geometry and tissue properties to be accurately defined to mimic the physiological disc. The physiological disc possesses residual strain in the annulus fibrosus (AF) due to osmotic swelling and due to inherently pre-strained fibers. We developed a disc model with residual contributions due to swelling-only, and a multigeneration model with residual contributions due to both swelling and AF fiber pre-strain and validated it against organ-scale uniaxial, quasi-static and multiaxial, dynamic mechanical tests. In addition, we demonstrated the models' ability to mimic the opening angle observed following radial incision of bovine discs. Both models were validated against organ-scale experimental data. While the swelling only model responses were within the experimental 95% confidence interval, the multigeneration model offered outcomes closer to the experimental mean and had a bovine model opening angle within one SD of the experimental mean. The better outcomes for the multigeneration model, which allowed for the inclusion of inherently pre-strained fibers in AF, is likely due to its uniform fiber contribution throughout the AF. We conclude that the residual contribution of pre-strained fibers in the AF should be included to best simulate the physiological disc and its behaviors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313175 | PMC |
http://dx.doi.org/10.1002/jsp2.1145 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Orthopedic Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, P. R. China.
Nucleus pulposus cell (NPC) senescence contributes to intervertebral disc degeneration (IVDD). However, the underlying molecular mechanisms are not fully understood. In this study, it is demonstrated that angiotensin-converting enzyme 2 (ACE2) counteracted the aging of NPCs and IVDD at the cellular and physiological levels.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Cardiac Surgery, Assistance Publique-Hôpitaux de Paris, Creteil, France.
Background: Secondary mitral regurgitation (SMR) is a condition affecting the left ventricle (LV) rather than the mitral valve (MV). If the MV remains structurally unchanged, enlargement of the LV or impairment of the papillary muscles can occur. Several mechanical interventions are available to dictate the resolution of MR.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Intensive Care, Ramsay Générale de Santé, Hôpital privé de la Loire, Saint Etienne, France.
Real-time monitoring of intracranial pressure (ICP) is a routine part of neurocritical care in the management of brain injury. While mainly used to detect episodes of intracranial hypertension, the ICP signal is also indicative of the volume-pressure relationship within the cerebrospinal system, often referred to as intracranial compliance (ICC). Several ICP signal descriptors have been proposed in the literature as surrogates of ICC, but the possibilities of combining these are still unexplored.
View Article and Find Full Text PDFCurr Rheumatol Rev
January 2025
University of Genoa, DISC Department, School of Medical and Pharmaceutical Sciences, Research Center of Osteoporosis and Osteoarticular Pathologies, Italy.
ATP is involved in numerous physiological functions, such as neurotransmission, modulation, and secretion, as well as in cell proliferation, differentiation, and death. While ATP serves an essential intracellular role as a source of energy, it behaves differently in the extracellular environment, where it acts as a signaling molecule capable of activating specific purinergic receptors (P2YRs and P2XRs) that modulate the response to ATP. Extracellular ATP signaling is a dynamic area of research, with particular interest in ATP's effects on inflammatory conditions and pain modulation.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Cardiac Surgery, Glenfield Hospital, University Hospitals of Leicester, Leicester LE3 9QP, UK.
Secondary mitral regurgitation (SMR) is characterized by a pathological process impacting the left ventricle (LV) as opposed to the mitral valve (MV). In the absence of structural alterations to the MV, the expansion of the LV or impairment of the papillary muscles (PMs) may ensue. A number of technical procedures are accessible for the purpose of determining the optimal resolution for MR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!