Practical application of surface-enhanced Raman spectroscopy (SERS) is greatly limited by the inaccurate quantitative analyses due to the measuring parameter's fluctuations induced by different operators, different Raman spectrometers, and different test sites and moments, especially during the field tests. Herein, we develop a strategy of quantitative SERS for field detection via designing structurally homogeneous and ordered Ag-coated Si nanocone arrays. Such an array is fabricated as SERS chips by depositing Ag on the template etching-induced Si nanocone array. Taking 4-aminothiophenol as the typical analyte, the influences of fluctuations in measuring parameters (such as defocusing depth and laser powers) on Raman signals are systematically studied, which significantly change SERS measurements. It has been shown that the silicon underneath the Ag coating in the chip can respond to the measuring parameters' fluctuations synchronously with and similar to the analyte adsorbed on the chip surface, and the normalization with Si Raman signals can well eliminate the big fluctuations (up to 1 or 2 orders of magnitude) in measurements, achieving highly reproducible measurements (mostly, <5% in signal fluctuations) and accurate quantitative SERS analyses. Finally, the simulated field tests demonstrate that the developed strategy enables quantitatively analyzing the highly scattered SERS measurements well with 1 order of magnitude in signal fluctuation, exhibiting good practicability. This study provides a new practical chip and reliable quantitative SERS for the field detection of real samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8320141 | PMC |
http://dx.doi.org/10.1021/acsomega.1c02179 | DOI Listing |
Anal Chim Acta
February 2025
Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.
Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:
Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.
Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).
J Colloid Interface Sci
January 2025
College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China. Electronic address:
Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, Anhui 243032, PR China. Electronic address:
Bacterial contamination is a very serious health and environmental problem, with the main source of toxicity being lipopolysaccharides in the cell walls of Gram-negative bacteria. Therefore, the development of effective analytical methods is crucial for the detection of lipopolysaccharide content. This work facilitates the efficient generation of precisely adjustable dual-mode signals for LPS detection in surface-enhanced Raman spectroscopy (SERS) and electrochemiluminescence (ECL) by inducing anisotropic morphological evolution of Au@Ag nanocubes (Au@AgNCs) through poly-cytosine (poly-C) DNA.
View Article and Find Full Text PDFMolecules
January 2025
School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
DNA methylation has been widely studied with the goal of correlating the genome profiles of various diseases with epigenetic mechanisms. Multiple approaches have been developed that employ extensive steps, such as bisulfite treatments, polymerase chain reactions (PCR), restriction digestion, sequencing, mass analysis, etc., to identify DNA methylation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!