Little Akaki River drains residential, industrial, and agricultural irrigation areas of Addis Ababa City Administration and is exposed to point and non-point sources of pollution. The purpose of this study was to identify sources, evaluate the levels of river water pollution, and its implications for environmental and public health. Pollution indices and multivariate statistical analyses were used to determine sources and levels of the river water pollution. Trace metals concentration was determined using inductive coupled plasma optical emission and spectrophotometer (ICP-OES). The average concentrations of COD, BOD, TDS, NO-N, NH-N SO and PO ranged from 40. 33 ± 5. 13 to 425 ± 8. 00 mg/L; 12.34 ± 0.11 to 188 ± 7.07 mg/L; 48.00 ± 0.83 to 915. 57 ± 1. 27 mg/L; 1.56 ± 1.01 to 66.50 ± 6.36 mg/L; 0.15 ± 0. 08 to 42.83 ± 11.43 mg/L; 20.50 ± 10.61 to 77.50 ± 17.68 mg/L; and 0.35 ± 0.33 to 37.95 ± 0.92 mg/L, respectively. The average concentrations of Zn ranged (0.048 ± 0.037 to 0.318 ± 0.158 mg/L), Cr (0.012 ± 0.007 to 0.203 ± 0.199 mg/L), Cd (<0.014 ± 0.0007 to 0.02 ± 0.001 mg/L) and Pb (0.031 ± 0.008 to 0.124 ± 0.034 mg/L). The comprehensive water pollution index values varied from 0.84-13.32, indicating that at all sampling sites (except for sampling site S1), the river water was heavily polluted (CPI >2.01). Heavy metal pollution index values further demonstrated potential environmental and public health implications. The principal component analysis revealed a total of 88.99% variation in the dataset, mainly contributed by organic matter, nutrients, dissolved salts, and trace metals that originated from anthropogenic sources. Contamination of the river water has impaired its suitability for urban agriculture, aquaculture, livestock drinking, and recreational purposes. Thus, improving the river water quality is recommended to mitigate potential adverse effects and promote sustainable use of water resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318859 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2021.e07526 | DOI Listing |
Appl Environ Microbiol
January 2025
Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China.
The protection of steel based on microbial biomineralization has emerged as a novel and eco-friendly strategy for corrosion control. However, the molecular basis of the biomineralization process in mineralization bacteria remains largely unexplored. We previously reported that EPS+ strain provides protection against steel corrosion by forming a hybrid biomineralization film.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
Polyamide (PA) membranes are widely utilized in desalination and water treatment applications, yet the mechanisms underlying water transport within these amorphous polymer materials remain insufficiently understood. To gain more insight into these problems on a microscopic scale, we employ molecular dynamics (MD) simulations to analyze the relationship between the structural properties and the water permeation behavior of PA membranes. Two distinct atomistic models of PA membranes are developed by controlling their degrees of cross-linking (DC).
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Faculty of Water Supply and Environmental Engineering, Arba Minch University Water Technology Institute, P.O.B 21, Arba Minch, Ethiopia.
In developing nations, the biggest threat to public health is the quality of the water. The Kulfo River provides the majority demand of the domestic water and irrigation along its course; however, it is observed that wastes from anthropogenic and natural activities enter the river. Therefore, this study aimed to examine the pollution status by integrating conventional methods with benthic macroinvertebrates.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Environ Sci Technol
January 2025
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
Metabolism-disrupting chemicals (MDCs) have attracted widespread attention due to their contributions to the prevalence of metabolic diseases worldwide. The farnesoid X receptor (FXR) is a typical lipid-sensing nuclear receptor and plays a crucial role in the development of metabolic diseases. However, few studies have examined the FXR activities of environmental samples and the corresponding MDCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!