Cyclic dinucleotides (CDNs), such as c-di-GMP (CDG), are agonists for stimulator of interferon genes (STING) and are promising for cancer immunotherapy. Yet, the therapeutic efficacy of CDNs has been limited by poor delivery and biostability. Here, STING-activating DNA nanovaccines (STING-NVs) are developed, which biostabilize, deliver, and conditionally release CDG in the endosome of immune cells, elicit potent antitumor immune responses in murine and human immune cells, ameliorate immunosuppression in vitro and in the tumor microenvironment, and mediate potent cancer immunotherapy in a murine melanoma model. STING-NVs have PLA--PEG in the core and cytosine (C)-rich i-motif DNA on the surface. i-Motif DNA undergoes characteristic pH-responsive conformational switch, allowing efficient CDG loading via C:G base pairing at physiological pH, and CDG release in sensitive response to acidic environment such as cell endosome. STING-NVs protect CDG from enzymatic degradation. STING-NVs facilitate cell delivery. Remarkably, STING-NVs promote the endosome escape of CDG by ninefold, and potentiate antitumor immunity. STING-NVs repolarize immunosuppressive M2-like macrophages into antitumor M1-like macrophages in vitro and in the tumor microenvironment of melanoma. In a poorly immunogenic murine melanoma model, intralesional STING-NVs outperform liposomal CDG and fluoride-CDG for melanoma immunotherapy. These results suggest the great potential of STING-NVs for cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323737 | PMC |
http://dx.doi.org/10.1002/adtp.202000083 | DOI Listing |
J Clin Invest
January 2025
Department of Laboratory Medicine, Division of Translational Cancer Researc, Lund University Cancer Centre, Lund University, Lund, Sweden.
The biology centered around the TGF-beta type I receptor Activin Receptor-Like Kinase (ALK)1 (encoded by ACVRL1) has been almost exclusively based on its reported endothelial expression pattern since its first functional characterization more than two decades ago. Here, in efforts to better define the therapeutic context in which to use ALK1 inhibitors, we uncover a population of tumor-associated macrophages (TAMs) that, by virtue of their unanticipated Acvrl1 expression, are effector targets for adjuvant anti-angiogenic immunotherapy in mouse models of metastatic breast cancer. The combinatorial benefit depended on ALK1-mediated modulation of the differentiation potential of bone marrow-derived granulocyte-macrophage progenitors, the release of CD14+ monocytes into circulation, and their eventual extravasation.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
University of Chicago, Chicago, IL, United States.
Based on the notion that hypomorphic germline genetic variants are linked to autoimmune diseases, we reasoned that novel targets for cancer immunotherapy might be identified through germline variants associated with greater T-cell infiltration into tumors. Here, we report that while investigating germline polymorphisms associated with a tumor immune gene signature, we identified PKCδ as a candidate. Genetic deletion of PKCδ in mice resulted in improved endogenous antitumor immunity and increased efficacy of anti-PD-L1.
View Article and Find Full Text PDFImmunol Res
January 2025
Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
B-cell acute lymphoblastic leukemia (B-ALL) is the most common form of cancer diagnosed in children. While the majority of patients survive with conventional treatment, chemotherapeutic agents have adverse effects and the potential for relapse persists even after full recovery. Given their pivotal function in anti-cancer immunity, there has been a surge in research exploring the potential of natural killer (NK) cells in immunotherapy, which has emerged as a promising avenue for treating leukemia.
View Article and Find Full Text PDFNeuro Oncol
January 2025
Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
Background: Despite advances in our understanding of the molecular underpinnings of meningioma progression and innovations in systemic and local treatments, recurrent meningiomas remain a substantial therapeutic challenge. The objective of this systematic review and meta-analysis is to provide a historical baseline, contemporary analysis, and propose a "rate of probable interest" to inform future clinical trial design and development on behalf of the RANO meningioma group.
Methods: PubMed, ClinicalTrials.
Cancer Rep (Hoboken)
January 2025
Department of Medical Oncology, Hematology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India.
Introduction: With the use of immune checkpoint inhibitors (ICIs) and targeted therapies, the clinical outcomes of metastatic melanoma have drastically improved. The current scenario has reduced the use of chemotherapy as a first-line treatment. We report an interesting case of a patient with stage IV ano-rectal canal malignant melanoma with an exceptional response to single-agent temozolomide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!