Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Exogenous ketone supplementation and whole-body cooling (WBC) have shown to independently influence exercise metabolism. Whether readily available ketone salts, with and without WBC, would provide similar metabolic benefits during steady-state aerobic and time-trial performances was investigated. Nine active males (VO: 56.3 ± 2.2 mL·kg·min) completed three single-blind exercise sessions preceded by: (1) ingestion of placebo (CON), (2) ketone supplementation (0.3 g·kg β-OHB) (KET), and (3) ketone supplementation with WBC (KETCO). Participants cycled in steady-state (SS, 60% ) condition for 30-min, immediately followed by a 15-min time trial (TT). Skin and core temperature, cardio-metabolic, and respiratory measures were collected continuously, whereas venous blood samples were collected before and after supplementation, after SS and TT. Venous β-OHB was elevated, while blood glucose was lower, with supplementation vs. CON ( < 0.05). TT power output was not different between conditions ( = 0.112, CON: 190 ± 43.5 W, KET: 185 ± 40.4 W, KETCO: 211 ± 50.7 W). RER was higher during KETCO (0.97 ± 0.09) compared to both CON (0.88 ± 0.04, = 0.012) and KET (0.88 ± 0.05, = 0.014). Ketone salt supplementation and WBC prior to short-term exercise sufficiently increase blood β-OHB concentrations, but do not benefit metabolic shifts in fuel utilization or improve time trial performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319384 | PMC |
http://dx.doi.org/10.3389/fnut.2021.663206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!