Epithelial wound healing is essential to repair the corneal barrier function after injury and requires coordinated epithelial sheet movement over the wounded region. The presence and role of pannexin1 on multilayered epithelial sheet migration was examined in unwounded and wounded corneal epithelium from C57BL/6J (B6) control and diet-induced obese (DiO) mice, a pretype 2 diabetic model. We hypothesize that pannexin1 is dysregulated, and the interaction of two ion-channel proteins (P2X7 and pannexin1) is altered in pretype 2 diabetic tissue. Pannexin1 was found to be present along cell borders in unwounded tissue, and no significant difference was observed between DiO and B6 control. However, an epithelial debridement induced a striking difference in pannexin1 localization. The B6 control epithelium displayed intense staining near the leading edge, which is the region where calcium mobilization was detected, whereas the staining in the DiO corneal epithelium was diffuse and lacked distinct gradation in intensity back from the leading edge. Cells distal to the wound in the DiO tissue were irregular in shape, and the morphology was similar to that of epithelium inhibited with 10Panx, a pannexin1 inhibitor. Pannexin1 inhibition reduced mobilization of calcium between cells near the leading edge, and MATLAB scripts revealed a reduction in cell-cell communication that was also detected in cultured cells. Proximity ligation was performed to determine if P2X7 and pannexin1 interaction was a necessary component of motility and communication. While there was no significant difference in the interaction in unwounded DiO and B6 control corneal epithelium, there was significantly less interaction in the wounded DiO corneas both near the wound and back from the edge. The results demonstrate that pannexin1 contributes to the healing response, and P2X7 and pannexin1 coordination may be a required component of cell-cell communication and an underlying reason for the lack of pathologic tissue migration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8295002PMC
http://dx.doi.org/10.1155/2021/4793338DOI Listing

Publication Analysis

Top Keywords

corneal epithelium
12
p2x7 pannexin1
12
leading edge
12
pannexin1
11
epithelial sheet
8
pretype diabetic
8
dio control
8
cell-cell communication
8
epithelium
6
dio
6

Similar Publications

Purpose: A human model able to simulate the manifestation of corneal endothelium decompensation could be advantageous for wound healing and future cell therapy assessment. The study aimed to establish an ex vivo human cornea endothelium wound model where endothelium function can be evaluated by measuring corneal thickness changes.

Methods: The human cornea was maintained in an artificial anterior chamber, with a continuous culture medium infusion system designed to sustain corneal endothelium and epithelium simultaneously.

View Article and Find Full Text PDF

Tear metabolomics reveals novel potential biomarkers in epithelial herpes simplex keratitis.

BMC Ophthalmol

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.

Background: Herpes simplex keratitis (HSK) is a recurrent inflammatory disease of cornea primarily initiated by type I herpes simplex virus infection of corneal epithelium. However, early diagnosis of HSK remains challenging due to the lack of specific biomarkers. This study aims to identify biomarkers for HSK through tear metabolomics analysis between HSK and healthy individuals.

View Article and Find Full Text PDF

Purpose: Although mechanical injury to the cornea (e.g. chronic eye rubbing) is a known risk factor for keratoconus progression, how it contributes to loss of corneal integrity is not known.

View Article and Find Full Text PDF

Here a bioengineered platform is introduced to investigate adverse effects of environmental materials on the human cornea. Using primary cells, this system is capable of reproducing the differentiated corneal epithelium and its underlying stroma in the human eye, which can then be treated with externally applied solid, liquid, or gaseous substances in a controlled manner and under physiologically relevant conditions. The proof-of-principle of how this system can be used to simulate human ocular exposure to different classes of environmental toxicants for direct visualization and quantitative analysis of their potential to induce acute corneal injury and inflammation is demonstrated.

View Article and Find Full Text PDF

Hyperosmotic stress-induced NLRP3 inflammasome activation via the mechanosensitive PIEZO1 channel in dry eye corneal epithelium.

Ocul Surf

January 2025

Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Zhejiang, 325000, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Zhejiang, 325000, China. Electronic address:

Unlabelled: The activation of the NLRP3 inflammasome by hyperosmotic stress is a critical pathophysiological response in dry eye disease (DED), driving the chronic cycle of inflammation on the ocular surface. The specific mechanism underlying hyperosmotic mechanical stimulation activates the NLRP3 inflammasome remains unclear. This study provides evidence that PIEZO1, a mechanosensitive ion channel, functions as the primary receptor for corneal epithelial cells in sensing mechanical stimulation induced by tear hyperosmolarity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!